Liu G. List of Plant Quarantine Pests in the People’s Republic of China. Pestic Mark Inf. 2007;13:40–1 (in Chinese).
Google Scholar
Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M, Ronald P, Dow M, Verdier V, Beer SV, Machado MA, Toth I, Salmond G, Foster GD. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol. 2012;13:614–29.
Article
PubMed
PubMed Central
Google Scholar
Samson R, Legendre JB, Christen R, Fischer-Le Saux M, Achouak W, Gardan L. Transfer of Pectobacterium chrysanthemi (Burkholder et al. 1953) Brenner et al. 1973 and Brenneria paradisiaca to the genus Dickeya gen. nov. as Dickeya chrysanthemi comb. nov. and Dickeya paradisiaca comb. nov. and delineation of four novel species, Dickeya dadantii sp. nov., Dickeya dianthicola sp. nov., Dickeya dieffenbachiae sp. nov. and Dickeya zeae sp. nov. Int J Syst Evol Microbiol. 2005;55(4):1415–27. https://doi.org/10.1099/ijs.0.02791-0.
Article
CAS
PubMed
Google Scholar
Brady C, Cleenwerck I, Denman S, Venter SN, Rodriguez-Palenzuela P, Coutinho TA, Devos P. Proposal to reclassify Brenneria quercina (Hildebrand and Schroth 1967) Hauben et al. 1999 into a new genus, Lonsdalea gen. nov., as Lonsdalea quercina comb. nov., descriptions of Lonsdalea quercina subsp. quercina comb. nov., Lonsdalea quercina subsp. iberica subsp. nov. and Lonsdalea quercina subsp. britannica subsp. nov., emendation of the description of the genus Brenneria, reclassification of Dickeya dieffenbachiae as Dickeya dadantii subsp. dieffenbachiae comb. nov., and emendation of the description of Dickeya dadantii. Int J Syst Evol Microbiol. 2012;62(7):1592–602.
Article
CAS
PubMed
Google Scholar
Parkinson N, Devos P, Pirhonen M, Elphinstone J. Dickeya aquatica sp nov., isolated from waterways. Int J Syst Evol Microbiol. 2014;64(7):2264–6.
Article
CAS
PubMed
Google Scholar
Tian Y, Zhao Y, Yuan X, Yi J, Fan J, Xu Z, Hu B, De Boer SH, Li X. Dickeya fangzhongdai sp. nov., a plant-pathogenic bacterium isolated from pear trees (Pyrus pyrifolia). Int J Syst Evol Microbiol. 2016;66(8):2831–5.
Article
CAS
PubMed
Google Scholar
Hussain MB, Zhang HB, Xu JL, Liu Q, Jiang Z, Zhang LH. The acyl-homoserine lactone-type quorum-sensing system modulates cell motility and virulence of Erwinia chrysanthemi pv. zeae. J Bacteriol. 2008;190(3):1045–53. https://doi.org/10.1128/JB.01472-07.
Article
CAS
PubMed
Google Scholar
Sławiak M, van Beckhoven JRCM, Speksnijder AGCL, Czajkowski R, Grabe G, van der Wolf JM. Biochemical and genetical analysis reveal a new clade of biovar 3 Dickeya spp. strains isolated from potato in Europe. Eur J Plant Pathol. 2009;125:245–61.
Article
Google Scholar
Lin BR, Shen HF, Pu XM, Tian XS, Zhao WJ, Zhu SF, Dong MM. First report of a soft rot of banana in Mainland China caused by a Dickeya sp. (Pectobacterium chrysanthemi). Plant Dis. 2010;94:640.
Article
PubMed
Google Scholar
Toth IK, van der Wolf JM, Saddler G, Lojkowska E, Hélias V, Pirhonen M, Tsror L, Elphinstone JG. Dickeya species: an emerging problem for potato production in Europe. Plant Pathol. 2011;60:385–99.
Article
Google Scholar
Zhou JN, Zhang HB, Wu J, Liu QG, Xi PG, Lee J, Liao JL, Jiang ZD, Zhang LH. A novel multi-domain polyketide synthase is essential for zeamine antibiotics production and the virulence of Dickeya zeae. Mol Plant-Microbe Interact. 2011;24(10):1156–64. https://doi.org/10.1094/MPMI-04-11-0087.
Article
CAS
PubMed
Google Scholar
Zhang JX, Shen HF, Pu XM, Lin BR. Identification of Dickeya zeae as a casual agent of bacterial soft rot in banana in China. Plant Dis. 2014;98(4):436–42.
Article
CAS
PubMed
Google Scholar
Sinha SK, Prasad M. Bacterial stalk rot of maize, its symptoms and host-range. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg. 1977;132:81–8.
CAS
PubMed
Google Scholar
Goto M. Bacterial Foot Rot of Rice Caused by a Strain of Erwinia-Chrysanthemi. Phytopathology. 1979;69(3):213–6. https://doi.org/10.1094/Phyto-69-213.
Article
Google Scholar
Liu QG, Wang ZZ. Infection characteristics of Erwinia chrysanthemi pv. zeae on rice. J S China Agric Univ. 2004;25:55–7 (in Chinese).
CAS
Google Scholar
Jafra S, Przysowa J, Gwizdek-Wiśniewska A, van der Wolf JM. Potential of bulb-associated bacteria for biocontrol of hyacinth soft rot caused by Dickeya zeae. J Appl Microbiol. 2008;106:268–77.
Article
PubMed
Google Scholar
Stead DE, Parkinson N, Bew J, Hennessy J, Wilson JK, Elphinstone JE. The first record of Dickeya zeae in the UK. Plant Pathol. 2010;59:401.
Article
Google Scholar
Myung IS, Jeong IH, Moon SY, Kim WG, Lee SW, Lee YH, Lee YK, Shim HS, Ra DS. First report of bacterial stalk rot of sweet corn caused by Dickeya zeae in Korea. New Dis Rep. 2010;22:236–50.
Google Scholar
Li B, Shi Y, Ibrahim M, Liu H, Shan C, Wang Y, Kube M, Xie GL, Sun G. Genome sequence of the rice pathogen Dickeya zeae strain ZJU1202. J Bacteriol. 2012;194(16):4452–3.
Article
CAS
PubMed Central
PubMed
Google Scholar
Bertani I, Passos da Silva D, Abbruscato P, Piffanelli P, Venturi V. Draft genome sequence of the plant pathogen Dickeya zeae DZ2Q, isolated from rice in Italy. Genome Announc. 2013;1(6):e00905–13.
Article
PubMed Central
PubMed
Google Scholar
Marrero G, Schneider KL, Jenkins DM, Alvarez AM. Phylogeny and classification of Dickeya based on multilocus sequence analysis. Int J Syst Evol Microbiol. 2013;63:3524–39.
Article
PubMed
Google Scholar
Pritchard L, Saddler GS, Parkinson NM, Bertrand V, Elphinstone JG. Detection of phytopathogens of the genus Dickeya using a PCR primer prediction pipeline for draft bacterial genome sequences. Plant Pathol. 2012;62:587–96.
Article
Google Scholar
Pritchard L, Humphris S, Saddler GS, Elphinstone JG, Pirhonen M, Toth IK. Draft genome sequences of 17 isolates of the plant pathogenic bacterium dickeya. Genome Announc. 2013;1(6):e00978–13.
Article
PubMed Central
PubMed
Google Scholar
Zhang JX, Lin BR, Shen HF, Pu XM. Genome sequnence of the banana pathogen Dickeya zeae strain MS1, which causes bacteria soft rot. Genome Announc. 2013;1(3):e00317–3.
PubMed
PubMed Central
Google Scholar
Martinez-Cisneros BA, Juarez-Lopez G, Valencia-Torres N, Duran-Peralta E, Mezzalama M. First report of bacterial stalk rot of maize caused by Dickeya zeae in Mexico. Plant Dis. 2014;98(9):1267.
Article
PubMed
Google Scholar
Ramachandran K, Manaf UA, Zakaria L. Molecular characterization and pathogenicity of Erwinia spp. associated with pineapple [Ananas comosus (L.) Merr.] and papaya (Carica papaya L.). J Plant Protection Res. 2015;55(4):396–404.
Article
CAS
Google Scholar
Kumar A, Hunjan MS, Kaur H, Dhillon HK, Singh PP. Biochemical responses associated with resistance to bacterial stalk rot caused by Dickeya zeae in maize. J Phytopathol. 2017;165:822–32.
Article
CAS
Google Scholar
Reifschneider FJB, Lopes CA. Bacterial top and stalk rot of maize Zea mays in brazi. Plant Dis. 1982;66(6):519–20.
Article
Google Scholar
Masumi M, Izadpanah K. Occurrence of bacterial stalk rot of maize in Fars Province. Iranian J Plant Pathol. 1988;24(1–4):29–30.
Google Scholar
Takeuchi T, Kodama F. Bacterial stalk rot of corn caused by Erwinia chrysanthemi pv. zeae (Sabet) Victoria, Arboleda et Muñoz occurred in Hokkaido, Japan, Annual Report of the Society of Plant Protection of North Japan; 1992. p. 42–4.
Google Scholar
Zheng YN. Occurrence and control of bacterial stalk rot of maize. J Anhui Agric Sci. 2006;34(10):2128–7.
Google Scholar
El-Helaly AF, Abo-El-Dahab MK, El-Goorani MA, Gabr MR. Identification of Erwinia sp., causing stalk rot of maize in Egypt. Zentralbl Bakteriol Naturwiss. 1978;133(7–8):680–5.
CAS
PubMed
Google Scholar
Wei G, Huang YL, Huang XS. Infection way and hosts of rice foot rot bacteria. Guangxi Agric Sci. 1986;6:32–4 (in Chinese).
Google Scholar
Liu QG, Zhang Q, Wei CD. Advances in Research of Rice Bacterial Foot Rot. Sci Agric Sin. 2013;46(14):2923–31 (in Chinese).
CAS
Google Scholar
Zhou Y, Zhai YC, Cao BH. Rice bacterial foot rot seriously happened in Rudong County, Jiangsu Province. Plant Prot. 1989;6:51 (in Chinese).
Google Scholar
Yang MH. Serious rice bacterial foot rot occurred in Taining County of Fujian Province in 1999. Plant Prot Technol Ext. 2000;20(2):41 (in Chinese).
Google Scholar
Li CY. Occurrence and control measures of rice bacterial foot rot in Anshun. Plant Doct. 2007;20(4):8 (in Chinese).
CAS
Google Scholar
Xue NQ, Liu Y. Occurrence and control of rice bacterial foot rot. Shandong Agric Sci. 2008;3:102–3 (in Chinese).
Google Scholar
Collmer A, Bauer DW. Erwinia chrysanthemi and Pesudominas syringae: plant pathogens trafficking in extracellular virulence proteins. Curr Top Microbiol Immunol. 1994;192:43–78.
CAS
PubMed
Google Scholar
Reverchon S, Rouanet C, Expert D, Nasser W. Charaterization of indigoidine biosynthetic genes in Erwinia chrysanthemi. Mol Microbiol. 2002;29:1407–18.
Article
Google Scholar
Franza T, Mahé B, Expert D. Erwinia chrysanthemi requires a second iron transport route dependent of the siderophore achromobactin for extracellular growth and plant infection. Mol Microbiol. 2005;55:261–75.
Article
CAS
PubMed
Google Scholar
Yap MN, Yang CH, Barak JD, Jahn CE, Charkowski AO. The Erwinia chrysanthemi type III secretion system is required for multicellular behavior. J Bacteriol. 2005;187:639–48.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zhou JN, Cheng YY, Lv MF, Liao LS, Chen YF, Gu YF, Liu SY, Jiang ZD, Xiong YY, Zhang LH. The complete genome sequence of Dickeya zeae EC1 reveals substantial divergence from other Dickeya strains and species. BMC Genomics. 2015;16:571.
Article
PubMed Central
PubMed
Google Scholar
Zhou JN, Zhang HB, Lv MF, Chen YF, Liao LS, Cheng YY, Liu SY, Chen SH, He F, Cui ZN, Jiang ZD, Chang CQ, Zhang LH. SlyA regulates phytotoxin production and virulence in Dickeya zeae EC1. Mol Plant Pathol. 2016;17(9):1398–408.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lv MF, Chen YF, Liao LS, Liang ZB, Shi ZR, Tang YX, Ye SX, Zhou JN, Zhang LH. Fis is a global regulator critical for modulation of virulence factor production and pathogenicity of Dickeya zeae. Sci Rep. 2018;8(1):341.
Article
PubMed Central
PubMed
Google Scholar
Coenye T, Falsent E, Vananneyt M, Hostef B, Govant JRW, Kersters K, Vandamme P. Classification of Alcaligenes faecalis-like isolates from the environment and human clinical samples as Ralstonia gilardii sp. nov. Int. J Syst Bacteriol. 1999;49:405–13.
Article
Google Scholar
Brady C, Cleenwerck I, Venter SN, Vancanneyt M, Swings J, Coutinho TA. Phylogeny and identification of Pantoea species associated with plants, humans and the natural environment based on multilocus sequence analysis (MLSA). Syst Appl Microbiol. 2008;31:447–60.
Article
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Steche G, Nei M, Kumar S. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28:2731–9.
Article
CAS
PubMed Central
PubMed
Google Scholar
Barras F, Thurn KK, Chatterjee AK. Resolution of four pectate lyase structural genes of Erwinia chrysanthemi (EC16) and characterization of the enzymes produced in Escherichia coli. Mol Gen Genet. 1987;209:319–25.
Article
CAS
PubMed
Google Scholar
Scott-Craig JS, Panaccione DG, Cervone F, Walton JD. Endopolygalacturonase is not required for pathogenicity of Cochliobolus carbonum on maize. Plant Cell. 1990;2:1191–200.
Article
CAS
PubMed Central
PubMed
Google Scholar
Chatterjee A, Cui Y, Liu Y, Dumenyo CK, Chatterjee AK. Inactivation of rsmA leads to overproduction of extracellular pectinases, cellulases, and proteases in Erwinia carotovora subsp. carotovora in the absence of the starvation/cell density-sensing signal, N-(3-oxohexanoyl)-L-homoserine lactone. Appl Environ Microbiol. 1995;61(5):1959–67.
CAS
PubMed
PubMed Central
Google Scholar
Hayward AC. Biology and epidemiology of bacterial wilt caused by Pseudomonas solanacearum. Annu Rev Phytopathol. 1991;29:65–108.
Article
CAS
PubMed
Google Scholar
Kao CC, Barlow E, Sequeira L. Extracellular polysaccharide is required of wild-type virulence of Pseudomonas solanacearum. J Bacteriol. 1992;174(3):1068–71.
Article
CAS
PubMed Central
PubMed
Google Scholar
Condemine G, Castillo A, Passeri F, Enard C. The PecT repressor coregulates synthesis of exopolysaccharides and virulence factors in Erwinia chrysanthemi. Mol Plant-Microbe Interact. 1992;12(1):45–52.
Article
Google Scholar
Liao LS, Cheng YY, Liu SY, Zhou JN, An SW, Lv MF, Chen YF, Gu YF, Chen SH, Zhang LH. Production of novel antibiotics zeamines through optimizing Dickeya zeae fermentation conditions. PLoS One. 2014;9(12):e116047.
Article
PubMed Central
PubMed
Google Scholar
Stiernagle T. Maintenance of C. elegans. In: Fay D, editor. C. elegans: a practical approach. Oxford: Oxford University Press; 1999. p. 1–11.
Google Scholar
Tan MW, Mahajan-Miklos S, Ausubel FM. Killing of Caenorhabditis elegans by Pseudomonas aeruginosa used to model mammalian bacterial pathogenesis. Pro Natl Acad Sci USA. 1999;96:715–20.
Article
CAS
Google Scholar
Houthoofd K, Braeckman BP, Vanfleteren JR. The hunt for the record life span in Caenorhabditis elegans. J Gerontol A-Biol Sci Med Sci. 2004;59:408–10.
Article
PubMed
Google Scholar
Chen YF, Lv MF, Liao LS, Gu YF, Liang ZB, Shi ZR, Liu SY, Zhou JN, Zhang LH. Genetic modulation of c-di-GMP turnover affects multiple virulence traits and bacterial virulence in rice pathogen Dickeya zeae. PLoS One. 2016;11(11):e0165979.
Article
PubMed Central
PubMed
Google Scholar
Cheng YY, Liu XL, An SW, Chang CQ, Zou YQ, Huang LH, Zhong J, Liu QG, Jiang ZD, Zhou JN, Zhang LH. A nonribosomal peptide synthase containing a stand-Alone condensation domain is essential for phytotoxin zeamine biosynthesis. Mol Plant-Microbe Interact. 2013;26:1294–301.
Article
CAS
PubMed
Google Scholar
Masschelein J, Mattheus W, Gao LJ, Moons P, Van Houdt R, Uytterhoeven B, Lamberigts C, Lescrinier E, Rozenski J, Herdewijn P, Aertsen A, Michiels C, Lavigne R. A PKS/NRPS/FAS hybrid gene cluster from Serratia plymuthica RVH1 encoding the biosynthesis of three broad spectrum, zeamine-related antibiotics. PLoS One. 2013;8(1):e54143.
Article
CAS
PubMed Central
PubMed
Google Scholar
Hellberg JEEU, Matilla MA, Salmond GPC. The broad-spectrum antibiotic, zeamine, kills the nematode worm Caenorhabditis elegans. Front Microbiol. 2015;6:137.
Article
PubMed Central
PubMed
Google Scholar
van der Wolf JM, Nijhuis EH, Kowalewska MJ, Saddler GS, Parkinson N, Elphinstone JG, Pritchard L, Toth IK, Lojkowska E, Potrykus M, Waleron M, de Vos P, Cleen-Werck I, Pirhonen M, Garlant L, Helias V, Pothier JF, Pflüger V, Duffy B, Tsror L, Manulis S. Dickeya solani sp. nov., a pectinolytic plant pathogenic bacterium isolated from potato (Solanum tuberosum). Int J Syst Evol Microbiol. 2014;64:768–74.
Article
PubMed
Google Scholar
Liu SY, Tang YX, Wang DC, Lin NQ, Zhou JN. Identification and characterization of a new Enterobacter onion bulb decay caused by Lelliottia amnigena in China. App Micro Open Access. 2016;2:114.
Google Scholar
Golanowska M, Kielar J, Łojkowska E. The effect of temperature on the phenotypic features and the maceration ability of Dickeya solani strains isolated in Finland, Israel and Poland. Eur J Plant Pathol. 2017;147(4):803–17.
Article
Google Scholar
Potrykus M, Golanowska M, Hugouvieux-Cotte-Pattat N, Lojkowska E. Regulators involved in Dickeya solani virulence, genetic conservation, and functional variability. Mol Plant-Microbe Interact. 2014;27:700–11.
Article
CAS
PubMed
Google Scholar
Alič Š, Naglič T, Tušek-Žnidarič M, Peterka M, Ravnika M, Dreo T. Putative new species of the genus Dickeya as major soft rot pathogens in Phalaenopsis orchid production. Plant Pathol. 2017;66(8):1357–68.
Article
Google Scholar
Li P, Wang DC, Yan JL, Zhou JN, Deng YY, Jiang ZD, Cao BH, He ZF, Zhang LH. Genomic analysis of phylotype I strain EP1 of Ralstonia solanacearum species complex reveals substantial divergence from other Ralstonia solanacearum strains. Front Microbiol. 2016;7:719.
Google Scholar
Deng YY, Wu J, Yin WF, Li P, Zhou JN, Chen SH, He F, Cai J. Diffusible signal factor family signals provide a fitness advantage to Xanthomonas campestris pv. campestris in interspecies competition. Environ Microbiol. 2016;18(5):1534–45.
Article
CAS
PubMed
Google Scholar
Zhou L, Wang J, Zhang LH. Modulation of bacterial Type III secretion system by a spermidine transporter dependent signaling pathway. PLoS One. 2007;2(12):e1291.
Article
PubMed Central
PubMed
Google Scholar
Li MH, Xie XL, Lin XF, Shi JX, Ding Z, Ling JF, Xi PG, Zhou JN, Leng YQ, Zhong SB, Jiang ZD. Functional characterization of the gene FoOCH1 encoding a putative 4 a-1, 6-mannosyltransferase in Fusarium oxysporum f. sp. cubense. Fungal Genet Biol. 2014;65(4):1–13.
Article
CAS
PubMed
Google Scholar
Shu CW, Zou CJ, Chen JL, Tang F, Yi RH, Zhou EX. Genetic diversity and population structure of Rhizoctonia solani AG-1 IA, the causal agent of rice sheath blight, in South China. Can J Plant Pathol. 2014;36(2):179–86.
Article
CAS
Google Scholar
Zhang SL, Liang ML, Naqvi NI, Lin CX, Qian WQ, Zhang LH, Deng YZ. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae. Autophagy. 2017;13:1318–30.
Article
CAS
PubMed Central
PubMed
Google Scholar
Liao LS, Zhou JN, Wang HS, He F, Liu SY, Jiang ZD, Chen SH, Zhang LH. Control of litchi downy blight by zeamines produced by Dickeya zeae. Sci Rep. 2015;5(1):1519.
Google Scholar
Liu SY, Lin NQ, Chen YM, Liang ZB, Liao LS, Lv MF, Chen YF, Tang YX, He F, Chen SH, Zhou JN, Zhang LH. Biocontrol of sugarcane smut disease by interference of fungal sexual mating and hyphal growth using a bacterial isolate. Front Microbiol. 2017;8:778.
Article
PubMed Central
PubMed
Google Scholar