The Millennium Development Goals Report, Task Force, 2015.
Google Scholar
World Bank. 2013. The World Bank Annual Report 2013. Washington, DC. © World Bank. https://openknowledge.worldbank.org/handle/10986/16091. License: CC BY 3.0 IGO.
Meric I, Wuertz S, Kloas W, Wibbelt G, Schulz C. Cottonseed oilcake as a protein source in feeds for juvenile tilapia (Oreochromis niloticus): Antinutritional effects and potential detoxification by iron supplementation. Isr J Aquacult-Bamid. 2011;63:568–76.
Google Scholar
Slawski H, Adem H, Tressel RP, Wysujack K, Koops U, Wuertz S, Schulz C. Replacement of fish meal with rapeseed protein concentrate in diets fed to Wels catfish (Silurus glanis L.). Aquac Nutr. 2011;17:605–12.
Article
CAS
Google Scholar
Tusche K, Wuertz S, Susenbeth A, Schulz C. Feeding fish according to organic aquaculture guidelines EC 710/2009: influence of potato protein concentrates containing various glycoalkaloid levels on health status and growth performance of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2011;319:122–31.
Article
CAS
Google Scholar
Francis G, Makkar HPS, Becker K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture. 2001;199:197–227.
Article
CAS
Google Scholar
Gatlin DM, Barrows FT, Brown P, Dabrowski K, Gaylord TG, Hardy RW, Herman E, Hu GS, Krogdahl Å, Nelson R, Overturf K, Rust M, Sealey W, Skonberg D, Souza EJ, Stone D, Wilson R, Wurtele E. Expanding the utilization of sustainable plant products in aquafeeds: a review. Aquac Res. 2007;38:551–79.
Article
CAS
Google Scholar
Trushenski JT, Kasper CS, Kohler CC. Challenges and opportunities in finfish nutrition. N Am J Aquacult. 2006;68:122–40.
Article
Google Scholar
Gu M, Bai N, Zhang Y, Krogdahl Å. Soybean meal induces enteritis in turbot Scophthalmus maximus at high supplementation levels. Aquaculture. 2016;464:286–95.
Article
CAS
Google Scholar
Hedrera MI, Galdames JA, Jimenez-Reyes MF, Reyes AE, Avendaño-Herrera R, Romero J, Feijóo CG. Soybean meal induces intestinal inflammation in zebrafish larvae. PLoS One. 2013;8(7):1–10. https://doi.org/10.1371/journal.pone.0069983.
Article
CAS
Google Scholar
Knudsen D, Jutfelt F, Sundh H, Sundell K, Koppe W, Frøkiær H. Dietary soya saponins increase gut permeability and play a key role in the onset of soyabean-induced enteritis in Atlantic salmon (Salmo salar L.). Br J Nutr. 2008;100:120–9.
Article
CAS
Google Scholar
Krogdahl Å, Penn M, Thorsen J, Refstie S, Bakke AM. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res. 2010;41:333–44.
Article
CAS
Google Scholar
Fuller R. Probiotics in man and animals. J Appl Bacteriol. 1989;66:365–78.
Article
CAS
Google Scholar
Verschuere L, Rombaut G, Sorgeloos P, Verstraete W. Probiotic bacteria as biological control agents in aquaculture. Microbiol Mol Biol Rev. 2000;64:655–71.
Article
CAS
Google Scholar
Hoseinifar SH, Ringø E, Masouleh AS, Esteban MA. Probiotic, prebiotic and synbiotic supplements in sturgeon aquaculture: a review. Rev Aquacult. 2016;8:89–102.
Article
Google Scholar
Lazado CC, Caipang CM: Mucosal immunity and probiotics in fish. Fish Shellfish Immunol 2014, 39(1):78–89. https://doi.org/10.1016/j.fsi.2014.04.015 Review.
Article
CAS
Google Scholar
Nayak SK. Probiotics and immunity: a fish perspective. Fish Shellfish Immunol. 2010;29(1):2–14 https://doi.org/10.1016/j.fsi.2010.02.017.
Article
CAS
Google Scholar
Pérez T, Balcázar JL, Ruiz-Zarzuela I, Halaihel N, Vendrell D, de Blas I, JL Múzquiz JL. Host – microbiota interactions within the fish intestinal ecosystem. Mucosal Immunol. 2010;3(4):355–60. https://doi.org/10.1038/mi.2010.12.
Article
CAS
PubMed
Google Scholar
Hoseinifar SH, Dadar M, Ringø E. Modulation of nutrient digestibility and digestive enzyme activities in aquatic animals: the functional feed additives scenario. Aquac Res. 2017;48(8):3987–4000. https://doi.org/10.1111/are.13368.
Article
CAS
Google Scholar
Carnevali O, Avella MA, Gioacchini G. Effects of probiotic administration on zebrafish development and reproduction. Gen Comp Endocrinol. 2013;188:297–302.
Article
CAS
Google Scholar
Ghosh S, Sinha A, Sahu C. Effect of probiotic on reproductive performance in female livebearing ornamental fish. Aquac Res. 2007;38:518–26.
Article
Google Scholar
Gioacchini G, Lombardo F, Merrifield DL, Silvi S, Cresci A, Avella MA, Carnevali O. Effects of probiotic on zebrafish reproduction. J Aquac Res Dev. 2011;S1(002) https://doi.org/10.4172/2155-9546.S1-002.
Tinh NTN, Dierckens K, Sorgeloos P, Bossier P. A review of the functionality of probiotics in the Larviculture food chain. Mar Biotechnol. 2008;10:1–12. https://doi.org/10.1007/s10126-007-9054-9.
Article
CAS
PubMed
Google Scholar
Sáenz de Rodrigáñez MA, Díaz-Rosales P, Chabrillón M, Smidt H, Arijo S, León-Rubio JM, Alarcón FJ, Balebona MC, Moriñigo MA, Cara JB, Moyano FJ. Effect of dietary administration of probiotics on growth and intestine functionality of juvenile Senegalese sole (Solea senegalensis, Kaup 1858). Aquac Nutr. 2009;15:177–85.
Article
Google Scholar
Cerezuela R, Fumanal M, Tapia-Paniagua ST, Meseguer J, Moriñigo MA, Esteban MÁ. Histological alterations and microbial ecology of the intestine in gilthead seabream (Sparus aurata L.) fed dietary probiotics and microalgae. Cell Tissue Res. 2012;350:477–89. https://doi.org/10.1007/s00441-012-1495-4.
Article
PubMed
Google Scholar
Tovar-Ramírez D, Zambonino-Infante J, Cahu C, Gatesoup FJ, Vázquez-Juárez R. Influence of dietary live yeast on European sea bass (Dicentrarchus labrax) larval development. Aquaculture. 2004;234:415–27.
Article
Google Scholar
Lamari F, Castex M, Larcher T, Ledevin M, Mazurais D, Bakhrouf A, Gatesoupe FJ. Comparison of the effects of the dietary addition of two lactic acid bacteria on the development and conformation of sea bass larvae, Dicentrarchus labrax, and the influence on associated microbiota. Aquaculture. 2013;376–379:137–45.
Article
Google Scholar
Van Doan H, Hoseinifar SH, Khanongnuch C, Kanpiengjai A, Unban K, Van Kim V, Srichaiyo S. Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture. 2018;491:94–100.
Article
Google Scholar
Panigrahi A, Kiron V, Kobayashi T, Puangkaew J, Satoh S, Sugita H. Immune responses in rainbow trout Oncorhynchus mykiss induced by a potential probiotic bacteria Lactobacillus rhamnosus JCM 1136. Vet Immunol Immunopathol. 2004;102:379–88.
Article
CAS
Google Scholar
Panigrahi A, Kiron V, Puangkaew J, Kobayashi T, Satoh S, Sugita H. The viability of probiotic bacteria as a factor influencing the immune response in rainbow trout Oncorhynchus mykiss. Aquaculture. 2005;243:241–54.
Article
Google Scholar
Mladineo I, Bušelić I, Hrabar J, Radonić I, Vrbatović A, Jozić S, Trumbić Ž. Autochthonous bacterial isolates successfully stimulate in vitro peripheral blood leukocytes of the European Sea bass (Dicentrarchus labrax). Front Microbiol. 2016;7:1244 https://doi.org/10.3389/fmicb.2016.01244.
Article
Google Scholar
Ridha MT, Azad IS. Effect of autochthonous and commercial probiotic bacteria on growth, persistence, immunity and disease resistance in juvenile and adult Nile tilapia Oreochromis niloticus. Aquac Res. 2016;47:2757–67.
Article
CAS
Google Scholar
Seghouani H, Garcia-Rangel CE, Füller J, Gauthier J, Derome N. Walleye autochthonous bacteria as promising probiotic candidates against Flavobacterium columnare. Front Microbiol. 2017;8:1349 https://doi.org/10.3389/fmicb.2017.01349.
Article
Google Scholar
Sun YZ, Yang HL, Ma RL, Lin WY. Probiotic applications of two dominant gut Bacillus strains with antagonistic activity improved the growth performance and immune responses of grouper Epinephelus coioides. Fish Shellfish Immunol. 2010;29:803–9.
Article
Google Scholar
Yang HL, Sun YZ, Ma RL, Li JS, Huang KP. Probiotic Psychrobacter sp. improved the autochthonous microbial diversity along the gastrointestinal tract of grouper Epinephelus coioides. J Aquac Res Development. 2011;S1:001. https://doi.org/10.4172/2155-9546.S1-001.
Xing M, Hou Z, Yuan J, Liu Y, Qu Y, Liu B. Taxonomic and functional metagenomic profiling of gastrointestinal tract microbiome of the farmed adult turbot (Scophthalmus maximus). FEMS Microbiol Ecol. 2013;86:432–43.
Article
CAS
Google Scholar
Wong S, Rawls JF. Intestinal microbiota composition in fishes is influenced by host ecology and environment. Mol Ecol. 2012;21:3100–2.
Article
Google Scholar
De BC, Meena DK, Behera BK, Das P, Das Mohapatra PK, Sharma AP. Probiotics in fish and shellfish culture: immunomodulatory and ecophysiological responses. Fish Physiol Biochem. 2014;40:921–71. https://doi.org/10.1007/s10695-013-9897-0.
Article
CAS
Google Scholar
Newaj-Fyzul A, Al-Harbi AH, Austin B. Review: developments in the use of probiotics for disease control in aquaculture. Aquaculture. 2014;431:1–11.
Article
Google Scholar
Carvalho IT, Santos L. Antibiotics in the aquatic environments: a review of the European scenario. Environ Int. 2016;94:736–57.
Article
Google Scholar
O'Flaherty E, Cummins E. Antibiotic resistance in surface water ecosystems: presence in the aquatic environment, prevention strategies, and risk assessment. Hum Ecol Risk Assess. 2017;23(2):299–322. https://doi.org/10.1080/10807039.2016.1247254.
Article
CAS
Google Scholar
Ozaktas T, Taskin B, Gozen AG. High level multiple antibiotic resistance among fish surface associated bacterial populations in non-aquaculture freshwater environment. Water Res. 2012;46:6382–90.
Article
CAS
Google Scholar
Suzuki S, Pruden A, Virta M, Zhang T. Editorial: Antibiotic Resistance in Aquatic Systems. Front Microbiol. 2017;8:14. https://doi.org/10.3389/fmicb.2017.00014.
Article
PubMed
PubMed Central
Google Scholar
Smith P. Antimicrobial resistance in aquaculture. Rev Sci Tech Off Int Epiz. 2008;27(1):243–64.
Article
CAS
Google Scholar
Cabello FC, Godfrey HP, Tomova A, Ivanova L, Dölz H, Millanao A, Buschmann AH. Antimicrobial use in aquaculture re-examined: its relevance to antimicrobial resistance and to animal and human health. Environ Microbiol. 2013;15(7):1917–42. https://doi.org/10.1111/1462-2920.12134.
Article
PubMed
Google Scholar
Martínez Cruz P, Ibáñez AL, Monroy Hermosillo OA, Ramírez Saad HC. Use of probiotics in aquaculture. ISRN Microbiol. 2012;916845. https://doi.org/10.5402/2012/916845.
Article
Google Scholar
Rosas-Ledesma P, Leon-Rubio JM, Alarcon FJ, Morinigo MA, Balebona MC. Calcium alginate capsules for oral administration of fish probiotic bacteria: assessment of optimal conditions for encapsulation. Aquac Res. 2012;43:106–16.
Article
Google Scholar
Roeselers G, Mittge EK, Stephens WZ, Parichy DM, Cavanaugh CM, Guillemin K, Rawls JF. Evidence for a core gut microbiota in the zebrafish. ISME J. 2011;5(10):1595–608.
Article
CAS
Google Scholar
An YH, Friedman RJ. Handbook of bacterial adhesion: principles, methods, and applications. Totowa: Humana Press. https://doi.org/10.1007/978-1-59259-224-1.
Letourneau J, Levesque C, Berthiaume F, Jacques M, Mourez M. In vitro assay of bacterial adhesion onto mammalian epithelial cells. J Vis Exp. 2011;51:2783. https://doi.org/10.3791/2783.
Article
CAS
Google Scholar
Amin M, Adams M, Bolch CJS, Burke CM. In vitro screening of lactic acid bacteria isolated from gastrointestinal tract of Atlantic Salmon (Salmo salar) as probiont candidates. Aquacult Int. 2017;25:485–98.
Article
CAS
Google Scholar
Nayak SK. Role of gastrointestinal microbiota in fish. Aquac Res. 2010;41(11):1553–73.
Article
Google Scholar
Sullam KE, Essinger SD, Lozupone CA, O’Connor MP, Rosen GL, Knight ROB, Kilham SS, Russell JA. Environmental and ecological factors that shape the gut bacterial communities of fish: a meta-analysis. Mol Ecol. 2012;21(13):3363–78.
Article
Google Scholar
González CJ, Santos JA, García-López ML, Otero A. Psychrobacters and related bacteria in freshwater fish. J Food Prot. 2000;63(3):315–21.
Article
Google Scholar
Wilson B, Danilowicz BS, Meijer WG. The diversity of bacterial communities associated with Atlantic cod Gadus morhua. Microb Ecol. 2008;55:425–34. https://doi.org/10.1007/s00248-007-9288-0.
Article
PubMed
Google Scholar
Svanevik CS, Lunestad BT. Characterisation of the microbiota of Atlantic mackerel (Scomber scombrus). Int J Food Microbiol. 2011;151:164–70.
Article
CAS
Google Scholar
Salas-Leiva J, Opazo R, Remond C, Uribe E, Velez A, Romero J. Characterization of the intestinal microbiota of wild-caught and farmed fine flounder (Paralichthys adspersus). Lat Am J Aquat Res. 2017;45(2):370–8.
Article
Google Scholar
Sun YZ, Yang HL, Ma RL, Zhang CX, Lin WY. Effect of dietary administration of Psychrobacter sp. on the growth, feed utilization, digestive enzymes and immune responses of grouper Epinephelus coioides. Aquac Nutr. 2011;17:733–40.
Article
Google Scholar
Zeng YX, Yu Y, Liu Y, Li HR. Psychrobacter glaciei sp. nov., isolated from the ice core of an Arctic glacier. Int J Syst Evol Micr. 2016;66:1792–8. https://doi.org/10.1099/ijsem.0.000939.
Article
CAS
Google Scholar
Lazado CC, Caipang CMA, Rajan B, Brinchmann MF, Kiron V. Characterization of GP21 and GP12: two potential probiotic bacteria isolated from the gastrointestinal tract of Atlantic cod. Probiotics Antimicro Prot. 2010;2:126–34. https://doi.org/10.1007/s12602-010-9041-8.
Article
Google Scholar
Lazado CC, Caipang CMA, Kiron V. Enzymes from the gut bacteria of Atlantic cod, Gadus morhua and their influence on intestinal enzyme activity. Aquac Nutr. 2012;18:423–31. https://doi.org/10.1111/j.1365-2095.2011.00928.x.
Article
CAS
Google Scholar
Makled SO, Hamdan AM, El-Sayed AFM, Hafez EE. Evaluation of marine psychrophile, Psychrobacter namhaensis SO89, as a probiotic in Nile tilapia (Oreochromis niloticus) diets. Fish Shellfish Immunol. 2017;61:194–200.
Article
CAS
Google Scholar
Farzanfar A. The use of probiotics in shrimp aquaculture. FEMS Immunol Med Microbiol. 2006;48:149–58.
Article
CAS
Google Scholar
Behera BK, Paria P, Das A, Bhowmick S, Sahoo AK, Das BK. Molecular characterization and pathogenicity of a virulent Acinetobacter baumannii associated with mortality of farmed Indian major carp Labeo rohita (Hamilton 1822). Aquaculture. 2017;471:157–62.
Article
CAS
Google Scholar
Cao H, Yu L, Ou R, Lu L, Yang X, Yang Y. Acinetobacter johnsonii: an emerging pathogen for cultured blunt snout bream Megalobrama amblycephala. Isr J Aquacult-Bamid. 2017;69(1368):1–7.
Google Scholar
Kozińska A, Paździor E, Pękala A, Niemczuk W. Acinetobacter johnsonii and Acinetobacter lwoffii - the emerging fish pathogens. Bull Vet Inst Pulawy. 2014;58(2):193–9. https://doi.org/10.2478/bvip-2014-0029.
Article
CAS
Google Scholar
Reddy MRK, Mastan SA. Emerging Acinetobacter schindleri in red eye infection of Pangasius sutchi. Afr J Biotechnol. 2013;12(50):6993–6.
Google Scholar
Austin B. The bacterial microflora of fish, revised. Sci World J. 2006;6:931–45.
Article
CAS
Google Scholar
Fečkaninová A, Koščová J, Mudroňová D, Popelka P, Toropilová J. The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture. 2017;469:1–8.
Article
Google Scholar
Austin B, Stuckey LF, Robertson PAW, Effendi I, Griffith DRW. A probiotic strain of Vibrio alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and Vibrio ordalii. J Fish Dis. 1995;18:93–6.
Article
Google Scholar
Irianto A, Austin B. Use of probiotics to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis. 2002;25:333–42.
Article
CAS
Google Scholar
Irianto A, Austin B. Use of dead probiotic cells to control furunculosis in rainbow trout, Oncorhynchus mykiss (Walbaum). J Fish Dis. 2003;26:59–62.
Article
CAS
Google Scholar
Gatesoupe FJ. Updating the importance of lactic acid bacteria in fish farming: natural occurrence and probiotic treatments. J Mol Microbiol Biotechnol. 2008;14:107–14.
Article
CAS
Google Scholar
Hai NV. The use of probiotics in aquaculture. J Appl Microbiol. 2015;119:917–35.
Article
CAS
Google Scholar
Naylor RL, Hardy RW, Bureau DP, Chiu A, Elliott M, Farrell AP, Forster I, Gatlin DM, Goldburg RJ, Hua K, Nichols PD. Feeding aquaculture in an era of finite resources. P Natl Acad Sci USA. 2009;106(36):15103–10. https://doi.org/10.1073/pnas.0905235106.
Article
CAS
Google Scholar
Couto A, Kortner TM, Penn M, Ostby G, Bakke AM, Krogdahl Å, Oliva-Teles A. Saponins and phytosterols in diets for European sea bass (Dicentrarchus labrax) juveniles: effects on growth, intestinal morphology and physiology. Aquac Nutr. 2015;21:180–93.
Article
CAS
Google Scholar
Burbank DR, LaPatra SE, Fornshell G, Cain KD. Isolation of bacterial probiotic candidates from the gastrointestinal tract of rainbow trout, Oncorhynchus mykiss (Walbaum), and screening for inhibitory activity against Flavobacterium psychrophilum. J Fish Dis. 2012;35:809–16. https://doi.org/10.1111/j.1365-2761.2012.01432.x.
Article
CAS
PubMed
Google Scholar