Janda JM, Abbott SL. The genus Aeromonas: taxonomy, pathogenicity, and infection. Clin Microbiol Rev. 2010;23:35–73.
Article
PubMed
PubMed Central
CAS
Google Scholar
Feelders RA, Vreugdenhil G, Eggermont AM, Kuiper-Kramer PA, van Eijk HG, Swaak AJ. Regulation of iron metabolism in the acute-phase response: interferon gamma and tumour necrosis factor alpha induce hypoferraemia, ferritin production and a decrease in circulating transferrin receptors in cancer patients. Eur J Clin Investig. 1998;28:520–7.
Article
CAS
Google Scholar
Reines HD, Cook FV. Pneumonia and bacteremia due to Aeromonas hydrophila. Chest. 1981;80:264–7.
Article
PubMed
CAS
Google Scholar
Brenden RA, Huizinga HW. Pathophysiology of experimental Aeromonas hydrophila infection in mice. J Med Microbiol. 1986;21:311–7.
Article
PubMed
CAS
Google Scholar
Rasmussen-Ivey CR, Figueras MJ, Mcgarey D, Liles MR. Virulence factors of Aeromonas hydrophila: in the wake of reclassification. Front Microbiol. 2016;7:1337.
PubMed
PubMed Central
Google Scholar
Toma'S JM. The main Aeromonas pathogenic factors. ISRN Microbiol. 2012;2012:256261.
Mekalanos JJ. Environmental signals controlling expression of virulence determinants in bacteria. J Bacteriol. 1992;174:1–7.
Sritharan M. Iron as a candidate in virulence and pathogenesis in mycobacteria and other microorganisms. World J Microbiol Biotechnol. 2000;16:769–80.
Article
CAS
Google Scholar
Halliwell B, Gutteridge JM. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J. 1984;219:1–14.
Article
PubMed
PubMed Central
CAS
Google Scholar
Braun V. Avoidance of iron toxicity through regulation of bacterial iron transport. Biol Chem. 1997;378:779–86.
PubMed
CAS
Google Scholar
Miller RA, Britigan BE. Role of oxidants in microbial pathophysiology. Clin Microbiol Rev. 1997;10:1–18.
Article
PubMed
PubMed Central
CAS
Google Scholar
Zhang YC, Shen YY, Yan XH, Wang FD. Molecular mechanisms of mammalian iron homeostasis. Chin. J Cell Biol. 2011;33:1179–90.
CAS
Google Scholar
Teng T, Xi BW, Xie J, Chen K, Pao X, Pan LK. Molecular cloning and expression analysis of Megalobrama amblycephala transferrin gene and effects of exposure to iron and infection with Aeromonas hydrophila. Fish Physiol Biochem. 2017;43:987–97.
Telford JR, Raymond KN. Amonabactin: a family of novel siderophores from a pathogenic bacterium. J Biol Inorg Chem. 1997;2:750–61.
Article
CAS
Google Scholar
Litwin CM, Calderwood SB. Role of iron in regulation of virulence genes. Clin Microbiol Rev. 1993;6:137–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ratledge C, Dover LG. Iron metabolism in pathogenic bacteria. Annu Rev Microbiol. 2003;54:881–941.
Article
Google Scholar
Miethke M, Marahiel M. Siderophore-based iron acquisition and pathogen control. Microbiol Mol Biol Rev. 2007;71:413–51.
Article
PubMed
PubMed Central
CAS
Google Scholar
Ramanan N, Wang Y. A high-affinity iron permease essential for candida albicans virulence. Science. 2000;288:1062–4.
Article
PubMed
CAS
Google Scholar
Horsburgh MJ, Clements MO, Crossley H, Ingham E, Foster SJ. Perr controls oxidative stress resistance and iron storage proteins and is required for virulence in staphylococcus aureus. Infect Immun. 2001;69:3744.
Article
PubMed
PubMed Central
CAS
Google Scholar
Velayudhan J, Hughes NJ, Mccolm AA, Bagshaw J, Clayton CL, Andrews SC, Kelly DJ. Iron acquisition and virulence in helicobacter pylori : a major role for feob, a high-affinity ferrous iron transporter. Mol Microbiol. 2000;37:274–86.
Article
PubMed
CAS
Google Scholar
Deng K, Blick RJ, Liu W, Hansen EJ. Identification of Francisella tularensis genes affected by iron limitation. Infect Immun. 2006;74:4224–36.
Article
PubMed
PubMed Central
CAS
Google Scholar
Lenco J, Hubálek M, Larsson P, Fucíková A, Brychta M, Macela A, Stulík J. Proteomics analysis of the Francisella tularensis LVS response to iron restriction: induction of the F. tularensis pathogenicity island proteins IglABC. FEMS Microbiol Lett. 2007;269:11–21.
Article
PubMed
CAS
Google Scholar
Folsom JP, Parker AE, Carlson RP. Physiological and proteomic analysis of Escherichia coli iron-limited chemostat growth. J Bacteriol. 2014;196:2748–61.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yao Z, Wang Z, Sun L, Li W, Shi Y, Lin L, Lin WX, Lin XM. Quantitative proteomic analysis of cell envelope preparations under iron starvation stress in Aeromonas hydrophila. BMC Microbiol. 2016;16:161.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pang MD, Jiang JW, Xie X, Wu YF, Dong YH, Kwok AH, Zhang W, Yao HC, Lu CP, Leung FC, Liu YJ. Novel insights into the pathogenicity of epidemic Aeromonas hydrophila ST251 clones from comparative genomics. Sci Rep. 2015;5:9833.
Article
PubMed
PubMed Central
Google Scholar
Caliaperumal J, Wowk S, Jones S, Ma YL, Colbourne F. Bipyridine, an iron chelator, does not lessen intracerebral iron-induced damage or improve outcome after intracerebral hemorrhagic stroke in rats. Transl Stroke Res. 2013;4:719–28.
Article
PubMed
CAS
Google Scholar
Alencar TD, Wilmart-Gonçalves TC, Vidal LS, Fortunato RS, Leitão AC, Lage C. Bipyridine (2,2′-dipyridyl) potentiates Escherichia coli lethality induced by nitrogen mustard mechlorethamine. Mutat Res. 2014;765:40.
Article
PubMed
CAS
Google Scholar
Lee P, Tan KS. Effects of epigallocatechin gallate against Enterococcus faecalis biofilm and virulence. Arch Oral Biol. 2015;60:393.
Article
PubMed
CAS
Google Scholar
GB/T 5009.90–2003. Determination of iron, magnesium and manganese in foods. Beijing: Standardization Administration of the People’s republic of China; 2003.
Google Scholar
Wang XK, Yang RQ, Zhou YL, Gu ZX. A comparative transcriptome and proteomics analysis reveals the positive effect of supplementary Ca2+ on soybean sprout yield and nutritional qualities. J Proteome. 2016;143:161.
Article
CAS
Google Scholar
Qin N, Tan X, Jiao Y, Liu L, Zhao W, Yang S, Jia AQ. RNA-Seq-based transcriptome analysis of methicillin-resistant Staphylococcus aureus biofilm inhibition by ursolic acid and resveratrol. Sci Rep. 2014;4:5467.
Article
PubMed
PubMed Central
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.
Article
PubMed
CAS
Google Scholar
Robinson MD, Mccarthy DJ, Smyth GK. Edger: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.
Article
PubMed
CAS
Google Scholar
Yan MX, Dai WJ, Cai EP, Deng YZ, Chang CQ, Jiang ZD, Zhang LH. Transcriptome analysis of Sporisorium scitamineum reveals critical environmental signals for fungal sexual mating and filamentous growth. BMC Genomics. 2016;17:354.
Article
PubMed
PubMed Central
CAS
Google Scholar
Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008;36:480–4.
Article
CAS
Google Scholar
Isaacson T, Damasceno CM, Saravanan RS, He Y, Catalá C, Saladié M, Rose JKC. Sample extraction techniques for enhanced proteomic analysis of plant tissues. Nat Protoc. 2006;1:769–74.
Article
PubMed
CAS
Google Scholar
Smith PK, Krohn RIG, Hermanson G, Mallia AKFD, Gartner FJH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC. Measurement of protein using Bicinchoninic acid. Anal Biochem. 1985;150:76–85.
Article
PubMed
CAS
Google Scholar
Candiano G, Bruschi M, Musante L, Santucci L, Ghiggeri GM, Carnemolla B, Orecchia P, Zardi L, Righetti PG. Blue silver: a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis. 2004;25:1327–33.
Article
PubMed
CAS
Google Scholar
Wisniewski J, Zougman A, Nagaraj N, Mann M. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6:359–62.
Article
PubMed
CAS
Google Scholar
You C, Lin C. He H, et al. iTRAQ-based proteome profile analysis of superior and inferior Spikelets at early grain filling stage in japonica Rice. BMC Plant Biol. 2017;17(1):100.
Article
PubMed
PubMed Central
Google Scholar
Shilov IV, Seymour SL, Patel AA, Loboda A, Tang WH, Keating SP, Hunter CL, Nuwaysir LM, Schaeffer DA. The paragon algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra. Mol Cell Proteomics. 2007;6:1638–55.
Article
PubMed
CAS
Google Scholar
Zhang MC, Cao YN, Yao B, Bai DQ, Zhou ZG. Characteristics of quenching enzyme AiiO-AIO6 and its effect on Aeromonas hydrophila virulence factors expression. J Fish China. 2011;35:1720–8.
CAS
Google Scholar
Swift S, Lynch MJ, Fish L, Kirke DF, Tomás JM, Stewart GSAB, Williams P. Quorum sensing-dependent regulation and blockade of exoprotease production in Aeromonas hydrophila. Infect Immun. 1999;67:5192–9.
PubMed
PubMed Central
CAS
Google Scholar
Chu W, Zhou S, Zhu W, Zhuang X. Quorum quenching bacteria Bacillus sp. QSI-1 protect zebrafish (Danio rerio) from Aeromonas hydrophila infection. Sci Rep. 2014;4:5446.
Article
PubMed
PubMed Central
CAS
Google Scholar
Gang L, Huang L, Su Y, Qin Y, Xu X, Zhao L, Yan Q. Flra, flrb and flrc regulate adhesion by controlling the expression of critical virulence genes in Vibrio alginolyticus. Emerging Microbes Infect. 2016;5:e85.
Article
CAS
Google Scholar
Tsou AM, Zhu J. Quorum sensing negatively regulates hemolysin transcriptionally and posttranslationally in Vibrio cholerae. Infect Immun. 2010;78:461–7.
Article
PubMed
CAS
Google Scholar
Teng T, Liang LG, Chen K, Xi BW, Xie J, Xu P. Isolation, identification and phenotypic and molecular characterization of pathogenic Vibrio vulnificus isolated from Litopenaeus vannamei. PLoS One. 2017;12:e0186135.
Article
PubMed
PubMed Central
CAS
Google Scholar
Saganuwan SA. A modified arithmetical method of reed and Muench for determination of a relatively ideal median lethal dose (LD 50). Afr J Pharm Pharmacol. 2011;5:1543–6.
Article
Google Scholar
Liu W, Dong H, Li J, Ou Q, Lv Y, Wang X, Xiang Z, He Y, Wu Q. RNA-seq reveals the critical role of OtpR in regulating Brucella melitensis metabolism and virulence under acidic stress. Sci Rep. 2015;5:10864.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nagar V, Bandekar JR, Shashidhar R. Expression of virulence and stress response genes in Aeromonas hydrophila under various stress conditions. J Basic Microbiol. 2016;56:1132–7.
Article
PubMed
CAS
Google Scholar
Teixeiragomes AP, Cloeckaert A, Zygmunt MS. Characterization of heat, oxidative, and acid stress responses in Brucella melitensis. Infect Immun. 2000;68:2954–61.
Article
CAS
Google Scholar
Casabianca A, Orlandi C, Barbieri F, Sabatini L, Cesare AD, Sisti D, Pasquaroli S, Magnani M, Citterio B. Effect of starvation on survival and virulence expression of Aeromonas hydrophila from different sources. Arch Microbiol. 2015;197:431–8.
Article
PubMed
CAS
Google Scholar
Payne SM, Lawlor KM. Chapter 11 – molecular studies on iron acquisition by non- Escherichia coli, species. Bacteria. 1990:225–48.
Allan BJ, Stevenson RM. Extracellular virulence factors of Aeromonas hydrophila in fish infections. Can J Microbiol. 1981;27:1114–22.
Article
PubMed
CAS
Google Scholar
Lv J, Yu GC, Sun ZH, Wang NJ, Zhu Y, Wang HC, Sun XS. Proteomic analysis of effects of iron depletion on Streptococcus pyogenes MGAS5005. Microbiology China. 2012;39:515–25.
Google Scholar
Bhatnagar, Elkins, Fortier. Heat stress alters the virulence of a rifampin-resistant mutant of Francisella tularensis LVS. I nfect Immun 1995; 63:154–159.
Ellis AE, Burrows AS, Stapleton KJ. Lack of relationship between virulence of Aeromonas salmonicida and the putative virulence factors: A-layer, extracellular proteases and extracellular haemolysins. J Fish Dis. 1988;11:309–23.
Article
CAS
Google Scholar
Brickman TJ, Cummings CA, Liew SY, Relman DA, Armstrong SK. Transcriptional profiling of the iron starvation response in Bordetella pertussis provides new insights into siderophore utilization and virulence gene expression. J Bacteriol. 2011;193:4798–812.
Article
PubMed
PubMed Central
CAS
Google Scholar
Sheikh MA, Taylor GL. Crystal structure of the Vibrio cholerae, ferric uptake regulator (Fur) reveals insights into metal co-ordination. Mol Microbiol. 2009;72:1208–20.
Article
PubMed
CAS
Google Scholar
Girija R. Iron and virulence in Francisella tularensis. Front Cell Infect Microbiol. 2017;7:107.
Google Scholar
Skaar EP. The battle for Iron between bacterial pathogens and their vertebrate hosts. PLoS Pathog. 2010;6:e1000949.
Article
PubMed
PubMed Central
CAS
Google Scholar
Wrighting DM, Andrews NC. Iron homeostasis and erythropoiesis. Curr Top Dev Biol. 2008;82:141–67.
Article
PubMed
CAS
Google Scholar
Maltz M, Levarge BL, Graf J. Identification of iron and heme utilization genes in Aeromonas and their role in the colonization of the leech digestive tract. Front Microbiol. 2015;6:763.
Article
PubMed
PubMed Central
Google Scholar
Hayrapetyan H, Siezen R, Abee T, Groot MN. Comparative genomics of Iron-transporting systems in Bacillus cereus strains and impact of Iron sources on growth and biofilm formation. Front Microbiol. 2016;7:842.
Article
PubMed
PubMed Central
Google Scholar
Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J Biol Chem. 1995;270:26723–6.
Article
PubMed
CAS
Google Scholar
Long H, Zeng Y. Studies on resistance property of fish serum Transferrins against Aeromonas hydrophila. Journal of Hubei Agricultural College. 2004;24:119–23.
Google Scholar
Gehring AM, Mori I, Walsh CT. Reconstitution and characterization of the Escherichia coli Enterobactin Synthetase from EntB, EntE, and EntF. Biochemistry. 1998;37:2648–59.
Article
PubMed
CAS
Google Scholar
Neilands JB. Molecular aspects of regulation of high affinity iron absorption in microorganisms. Adv Inorg Biochem. 1990;8:63–90.
PubMed
CAS
Google Scholar
Crosa JH, Walsh CT. Genetics and assembly line enzymology of Siderophore biosynthesis in Bacteria. Microbiol Mol Biol Rev. 2002;66:223–49.
Article
PubMed
PubMed Central
CAS
Google Scholar
Franza T, Enard C, Van GF, Expert D. Genetic analysis of the Erwinia chrysanthemi 3937 chrysobactin iron-transport system: characterization of a gene cluster involved in uptake and biosynthetic pathways. Mol Microbiol. 1991;5:1319–29.
Article
PubMed
CAS
Google Scholar
Bearson BL, Bearson SM, Uthe JJ, Dowd SE, Houghton JO, Lee I, Toscano MJ, Lay Jr DC. Iron regulated genes of Salmonella enterica serovar typhimurium in response to norepinephrine and the requirement of fepDGC for norepinephrine-enhanced growth. Microbes Infect. 2008;10:807–16.
Article
PubMed
CAS
Google Scholar
Bou-Abdallah F. The iron redox and hydrolysis chemistry of the ferritins. Biochim Biophys Acta. 2010;1800:719–31.
Article
PubMed
CAS
Google Scholar
Hubálek M, Hernychová L, Havlasová J, Kasalová I, Neubauerová V, Stulík J, Macela A, Lundqvist M, Larsson P. Towards proteome database of Francisella tularensis. J Chromatogr B. 2003;787:149–77.
Article
CAS
Google Scholar
Hubálek M, Hernychová L, Brychta M, Lenco J, Zechovská J, Stulík J. Comparative proteome analysis of cellular proteins extracted from highly virulent Francisella tularensis ssp. tularensis and less virulent F. tularensis ssp. holarctica and F. tularensis ssp. mediaasiatica. Proteomics. 2004;4:3048–60.
Article
PubMed
CAS
Google Scholar
Holden KM, Browning GF, Noormohammadi AH, Markham PF, Marenda MS. TonB is essential for virulence in avian pathogenic Escherichia coli. Comparative Immunology Microbiology and Infectious Diseases. 2012;35:129–38.
Article
Google Scholar
Dong Y, Liu J, Pang M, Du H, Wang N, Awan F, Lu C, Liu Y. Catecholamine-stimulated growth of Aeromonas hydrophila requires the TonB2 energy transduction system but is independent of the Amonabactin Siderophore. Front Cell Infect Microbiol. 2016;6:183.
Article
PubMed
PubMed Central
CAS
Google Scholar
Angerer A, Gaisser S, Braun V. Nucleotide sequences of the sfuA, sfuB, and sfuC genes of Serratia marcescens suggest a periplasmic-binding-protein-dependent iron transport mechanism. J Bacteriol. 1990;172:572–8.
Article
PubMed
PubMed Central
CAS
Google Scholar
Andrews NC. Iron homeostasis: insights from genetics and animal models. Nat Rev Genet. 2000;1:208–17.
Article
PubMed
CAS
Google Scholar
Rahman MH, Suzuki S, Kawai K. Formation of viable but non-culturable state (VBNC) of Aeromonas hydrophila, and its virulence in goldfish, Carassius auratus. Microbiol Res. 2001;156:103–6.
Article
PubMed
CAS
Google Scholar
Maalej S, Gdoura R, Dukan S, Hammami A, Bouain A. Maintenance of pathogenicity during entry into and resuscitation from viable but nonculturable state in Aeromonas hydrophila, exposed to natural seawater at low temperature. J Appl Microbiol. 2004;97:557–65.
Article
PubMed
CAS
Google Scholar
Mchugh JP, Rodríguezquinoñes F, Abdultehrani H, Svistunenko DA, Poole RK, Cooper CE, Andrews SC. Global iron-dependent gene regulation in Escherichia coli. A new mechanism for iron homeostasis J Biol Chem. 2003;278:29478–86.
PubMed
CAS
Google Scholar
He X. Proteomic analysis of biological affects on Streptococcus pneumoniae induced by manganese depression. Jinan University 2011.
Cunningham AB, Sharp RR, Jr FC, Gerlach R. Effects of starvation on bacterial transport through porous media. Adv Water Resour. 2007;30:1583–92.
Article
Google Scholar
Elgaml A, Miyoshi SI. Regulation systems of protease and hemolysin production in Vibrio vulnificus. Microbiol Immunol. 2017;61:1–11.
Article
PubMed
CAS
Google Scholar
Tang TS, Lu CP. An Acinetobacter baumannii strain isolated from mandarin fish possesses type 4 pili. J Nanjing Agric Univ. 1997;20:114–6.
Google Scholar
Chen XQ, Cai HY, Zhang W, Yan MY, Gao H, Duan GX, Yan ZY. The Role of Fur Involved in Bioflim Formation of Vibrio Cholerae. Prog Mod Biomed. 2013;13:2841–5.
Vasil ML, Ochsner UA. The response of Pseudomonas aeruginosa, to iron: genetics, biochemistry and virulence. Mol Microbiol. 1999;34:399–413.
Article
PubMed
CAS
Google Scholar
Thune RL, Johnson MC, Graham TE, Amborski RL. Aeromonas hydrophila B-haemolysin: purification and examination of its role in virulence in 0-group channel catfish, Ictalurus punctatus (Rafinesque). J Fish Dis. 1986;9:55–61.
Article
CAS
Google Scholar
Zhu DL, Li AH, Wang JG, Li M, Cai TZ, Hu G. The correlation between the distribution pattern of virulence genes and the virulence of Aeromonas hydrophila strains. Acta Sci Nat Univ Sunyatseni. 2006;45:82–5.
CAS
Google Scholar
Chu WH. Invasion mechanism and extracellular protease of Aeromonas hydrophila. Nanjing Agric Univ. 2002;
Cao Q, Zhang XY, Pang MD, Wang NN. Identification and molecular typing of the epidemic Aeromonas hydrophila strains in one farm of Nanjing. J Fish China. 2017;41:134–41.
CAS
Google Scholar
Cascón A, Yugueros J, Temprano A, Sánchez M, Hernanz C, Luengo JM, Naharro GN. A major secreted elastase is essential for pathogenicity of Aeromonas hydrophila. Infect Immun. 2000;68:3233–41.
Article
PubMed
PubMed Central
Google Scholar