Ali M, Dickinson G, Murphy K. Predictors of plant diversity in a hyperarid desert wadi ecosystem. J Arid Environ. 2000;45(3):215–30.
Article
Google Scholar
Salama F, Ma E-G, Gadallah M, Salah E-N, Ahmed A. Variations in vegetation structure, species dominance and plant communities in south of the Eastern Desert-Egypt. Notulae Scientia Biologicae. 2014;6(1):41.
Article
Google Scholar
Shaltout KH, El Keblawy AA, Mousa MT. Evaluation of the range plants quality and palatability for camel grazing in the United Arab Emirates. J Camelid Sci. 2008;1:1–13.
Google Scholar
Roeder E, Sarg T, El-Dahmy S, Ghani AA. Pyrrolizidine alkaloids from Crotalaria Aegyptiaca. Phytochemistry. 1993;34(5):1421–3.
Article
CAS
Google Scholar
Kandal HA, Yacoub HA, Gerkema MP, Swart JA. Vanishing knowledge of plant species in the Wadi Allaqi Desert area of Egypt. Hum Ecol. 2016:1–12.
Vasisht K, Kumar V. Compendium of medicinal and aromatic plants Africa. Earth, environmental and marine sciences and technologies. Area Science Park, Trieste, Italy: ICS-UNIDO; 2004.
Google Scholar
Waller JH, Bridge J: Plant diseases and nematodes in the Sultanate of Oman: Ministry of Agriculture and fisheries; 1978.
Google Scholar
Zreik L, Carle P, Bové JM, Garnier M. Characterization of the Mycoplasma like organism associated with Witches-broom disease of lime and proposition of a Candidatus Taxon for the organism, Candidatus Phytoplasma aurantifolia. Int J Syst Bacteriol. 1995;45:449–53.
Article
CAS
PubMed
Google Scholar
Al-Yahyai RA, Khan I, Al-Said FA, Al-Sadi AM, Al-Wahaibi A, Deadman ML. Status of Citrus aurantifolia infected with witches’ broom disease of lime in Oman. Acta Hortic. 2012;928:375–81.
Article
Google Scholar
Khan AJ, Azam KM, Deadman M, Al-Subhi AM, Jones P. First report of alfalfa witches broom disease in Oman caused by a phytoplasma of the 16SrII group. Plant Dis. 2001;85:1287.
Article
Google Scholar
Al-Sakeiti M, Al-Subhi A, Al-Saady N, Deadman M: First report of witches'-broom disease of sesame (Sesamum Indicum) in Oman. Plant Dis 2005, 89(5):530-530.
Al-Saady NA, Al Subhi AM, Al-Nabhani A, Khan AJ. First report of agroup 16 srII phytoplasma infecting chickpea in Oman. Plant Dis. 2006;90:973.
Article
Google Scholar
Hogenhout SA, Oshima K, AMMAR ED, Kakizawa S, KINGDOM HN, Namba S. Phytoplasmas: bacteria that manipulate plants and insects. Mol Plant Pathol. 2008;9(4):403–23.
Article
CAS
PubMed
Google Scholar
Bertaccini A. Phytoplasmas: diversity, taxonomy, and epidemiology. Front Biosci. 2007;12:673–89.
Article
CAS
PubMed
Google Scholar
Gasparich GE. Spiroplasmas and phytoplasmas: microbes associated with plant hosts. Biologicals. 2010;38(2):193–203.
Article
CAS
PubMed
Google Scholar
Ammar E, Hogenhout S. Mollicutes associated with arthropods and plants. Insect symbiosis. 2006;2:97–118.
Article
Google Scholar
Sinha R, Paliwal Y. Localization of a Mycoplasma-like organism in tissues of a leafhopper vector carrying clover phyllody agent. Virology. 1970;40(3):665–72.
Article
CAS
PubMed
Google Scholar
Heinrich M, Botti S, Caprara L, Arthofer W, Strommer S, Hanzer V, Katinger H, Bertaccini A, Machado MLDC. Improved detection methods for fruit tree phytoplasmas. Plant Mol Biol Report. 2001;19(2):169–79.
Article
CAS
Google Scholar
Lee I-M, Davis RE. Mycoplasmas which infect plants and insects. Washington, DC(USA): American Society For Microbiology; 1992. p. 379–90.
Google Scholar
Bertaccini A, Duduk B, Paltrinieri S, Contaldo N. Phytoplasmas and phytoplasma diseases: a severe threat to agriculture. Am J Plant Sci. 2014;2014
Doi Y, Teranaka M, Yora K, Asuyama H. Mycoplasma or PLT group-like micro-organisms found in the phloem element of plants infected with mulberry dwarf, potato witches’ broom, aster yellows or Paulownia witches’ broom. Ann Phytopathol Soc Jpn. 1967;33:259–66.
Article
Google Scholar
Dickinson M, Hodgetts J. Phytoplasma methods and protocols, vol. 938. United Kingdom: Springer; 2013.
Book
Google Scholar
Musetti R, Favali MA. Microscopy techniques applied to the study of phytoplasma diseases: traditional and innovative methods. Curr Issues Multidisciplinary Microsc Res Educ. 2004;2:72–80.
Google Scholar
Lee IM, Davis RE, Gundersen-Rindal DE. Phytoplasma: phytopathogenic mollicutes. Annu Rev Microbiol. 2000;54:221–55.
Article
CAS
PubMed
Google Scholar
Ahrens U, Seemüller E. Detection of DNA of plant pathogenic mycoplasmalike organisms by a polymerase chain reaction that amplifies a sequence of the 16 S rRNA gene. Phytopathology. 1992;82(8):828–32.
Article
CAS
Google Scholar
Deng SJ, Hiruki C. Genetic relatedness between two non-culturable mycoplasmalike organisms revealed by nucleic acid hybridization and polymerase chain reaction. Phytopathology. 1991;81:1475–9.
Article
Google Scholar
Lee I-M, Bottner-Parker K, Zhao Y, Davis R, Harrison N. Phylogenetic analysis and delineation of phytoplasmas based on secY gene sequences. Int J Syst Evol Microbiol. 2010;60(12):2887–97.
Article
PubMed
Google Scholar
Streten C, Gibb K. Genetic variation in Candidatus Phytoplasma australiense. Plant Pathol. 2005;54(1):8–14.
Article
CAS
Google Scholar
Martini M, Lee I-M, Bottner KD, Zhao Y, Botti S, Bertaccini A, Harrison NA, Carraro L, Marcone C, Khan AJ, et al. Ribosomal protein gene-based phylogeny for finer differentiation and classification of phytoplasmas. Int J Syst Evol Microbiol. 2007;57:2037–51.
Article
CAS
PubMed
Google Scholar
Duduk B, Bertaccini A. Phytoplasma classification: taxonomy based on 16S ribosomal gene, is it enough? Phytopathogenic Mollicutes. 2011;1(1):3–13.
Article
Google Scholar
Marcone C, Lee I, Davis R, Ragozzino A, Seemüller E. Classification of aster yellows-group phytoplasmas based on combined analyses of rRNA and tuf gene sequences. Int J Syst Evol Microbiol. 2000;50(5):1703–13.
Article
CAS
PubMed
Google Scholar
Makarova O, Contaldo N, Paltrinieri S, Kawube G, Bertaccini A, Nicolaisen M. DNA barcoding for identification of ‘Candidatus Phytoplasmas’ using a fragment of the elongation factor Tu gene. PLoS One. 2012;7(12):e52092.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hodgetts J, Boonham N, Mumford R, Harrison N, Dickinson M. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of ‘Candidatus Phytoplasma’. Int J Syst Evol Microbiol. 2008;58(8):1826–37.
Article
CAS
PubMed
Google Scholar
Kakizawa S, Oshima K, Namba S. Diversity and functional importance of phytoplasma membrane proteins. Trends Microbiol. 2006;14(6):254–6.
Article
CAS
PubMed
Google Scholar
Kakizawa S, Oshima K, Ishii Y, Hoshi A, Maejima K, Jung H-Y, Yamaji Y, Namba S. Cloning of immunodominantmembrane protein genes of phytoplasmas and their in planta expression. FEMS Microbiol Lett. 2009;293:92–101.
Article
CAS
PubMed
Google Scholar
Danet JL, Balakishiyeva G, Cimerman A, Sauvion N, Marie-Jeanne V, Labonne G, Laviňa A, Batlle A, Križanac I, Škorić D. Multilocus sequence analysis reveals the genetic diversity of European fruit tree phytoplasmas and supports the existence of inter-species recombination. Microbiology. 2011;157(2):438–50.
Article
CAS
PubMed
Google Scholar
Siampour M, Izadpanah K, Galetto L, Salehi M, Marzachi C. Molecular characterization, phylogenetic comparison and serological relationship of the imp protein of several ‘Candidatus Phytoplasma aurantifolia’strains. Plant Pathol. 2013;62(2):452–9.
Article
CAS
Google Scholar
Sugio A, MacLean AM, Kingdom HN, Grieve VM, Manimekalai R, Hogenhout SA. Diverse targets of phytoplasma effectors: from plant development to defense against insects. Annu Rev Phytopathol. 2011a;49:175–95.
Article
CAS
PubMed
Google Scholar
Sugio A, Kingdom H, MacLean A, Grieve V, Hogenhout S. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. Proc Natl Acad Sci U S A. 2011;108(48):1254–63.
Article
Google Scholar
Bai X, Correa VR, Toruño TY, Ammar E-D, Kamoun S, Hogenhout SA. AY-WB phytoplasma secretes a protein that targets plant cell nuclei. Mol Plant-Microbe Interact. 2009;22(1):18–30.
Article
CAS
PubMed
Google Scholar
Lu Y-T, Li M-Y, Cheng K-T, Tan CM, Su L-W, Lin W-Y, Shih H-T, Chiou T-J, Yang J-Y. Transgenic plants that express the phytoplasma effector SAP11 show altered phosphate starvation and defense responses. Plant Physiol. 2014;164(3):1456–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Weintraub PG, Beanland L. Insect vectors of phytoplasmas. Annu Rev Entomol. 2006;51:91–111.
Article
CAS
PubMed
Google Scholar
Carraro L, Loi N, Ermacora P. The ‘life cycle’ of pear decline phytoplasma in the vector Cacopsylla pyri. J Plant Pathol. 2001:87–90.
Khan AJ, Botti S, Al-Subhi AM, Zaidi MA, Altosaar I, Alma A, Bertaccini A. Molecular characterization of the 16S rRNA gene of phytoplasmas detected in two leafhopper species associated with alfalfa plants infected with witches' broom in Oman. Phytopathol Mediterr. 2003;42(3):257–67.
CAS
Google Scholar
Doyle JJ, Doyle JL. A rapid DNA isolation procedure for small amount of fresh leaf tissue. Phytochemcial Bull. 1987;19:11–5.
Google Scholar
Schneider B, Seemuller E, Smart CD, Kirkpatrick BC. Phylogenetic classification of plant pathogenic mycoplasmalike organisms or phytoplasmas. In: Raszin S, Tully JG, editors. Molecular and diagnostic procedures in mycoplasmology, vol. 2. New York: Academic Press; 1995. p. 369–80.
Chapter
Google Scholar
Gundersen DE, Lee IM. Ultrasensitive detection of phytoplasmas by nested PCR assay using two universal primer pairs. Phytopathol Mediterr. 1996;35:144–51.
CAS
Google Scholar
Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. In: Nucleic acids symposium series, vol. 1999; 1999. p. 95–8.
Google Scholar
Thompson JD, Higgins DG, Gibson TJ. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994;22:4673–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Swofford DL: PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.0b10.. Sunderland, Massachusetts.: Sinauer associates; 2002.
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 2013:mst197.
Kimura M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol. 1980;16(2):111–20.
Article
CAS
PubMed
Google Scholar
Zhao Y, Wei W, Lee M, Shao J, Suo X, Davis RE. Construction of an interactive online phytoplasma classification tool, iPhyClassifier, and its application in analysis of the peach X-disease phytoplasma group (16SrIII). Int J Syst Evol Microbiol. 2009;59(10):2582–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garnier M, Zreik L, Bové JM. Witches’ broom, a lethal mycoplasmal disease of lime trees in the Sultanate of Oman and the United Arab Emirates. Plant Dis. 1991;75:546–51.
Article
Google Scholar
González JG, Tanaka FO, Lopes JS. First findings in the route of the maize bushy stunt Phytoplasma within its vector Dalbulus maidis (Hemiptera: Cicadellidae). J Econ Entomol. 2016;109(2):966–8.
Article
PubMed
Google Scholar
Mulpuri S, Muddanuru T: Molecular identification of a 16SrII-D phytoplasma associated with sunflower phyllody in India. Aust Plant Dis Notes 2016, 11(1):1-5.
Gao Y, Dong YZ, Tan WP, Sun GZ, Zhu YR, Zhu XP. Detection and identification of an elm yellows group Phytoplasma associated with camellia in China. J Phytopathol. 2015;163(7–8):560–6.
Article
CAS
Google Scholar
Al-Subhi AM, Al-Saady NA, Khan AJ. Molecular characterization of phytoplasma associated with Echinops witches’ broom disease. Bull Insectology. 2007;60(2):289.
Google Scholar
Al-Subhi AM, Al-Saady NA, Al-Habsi KA, Khan AJ. First report of group 16SrVI Phytoplasma in radish from Oman. In: The 6th international scientific seminar on plant health. Havana, Cuba; 2008.
Al-Saady NA, Khan AJ, Kalari A, Al-Subhi AM, Bertaccini A. Candidatus Phytoplasma omanense associated with witches'-broom of Cassia Italica (mill.) Spreng. In Oman. Int J Syst Evol Microbiol. 2008;58:461–6.
Article
CAS
PubMed
Google Scholar
Seemüller E, Marcone C, Lauer U, Ragozzino A, Göschl M. Current status of molecular classification of the phytoplasmas. J Plant Pathol. 1998;80:3–26.
Wang Z, Chen Q, Yang L, Li H, Bai C: Occurrence of a 16SrII group phytoplasma associated with crotalaria witches’ broom in Hainan, China. Plant Pathol 2008, 57(2):364-364.
Kyu Kyu Win N, Hee-Young J, Ohga S. Characterization of sunn hemp witches’ broom phytoplasma in Myanmar. J Fac Agric Kyushu Univ. 2011;56(2):217–21.
Google Scholar
Wulff N, Teixeira D, Martins E, Toloy R, Bianco L, Colletti D, Kitajima E, Bové J. Sunn hemp, a major source-plant of the phytoplasma associated with huanglongbing symptoms of sweet orange in São Paulo state, Brazil. J Citrus Pathol. 2015;2:26956.
Montano HG, Cunha J Jr, Pimentel JP. Phytoplasmas in Brazil: an update. In: Bulletin of Insectology: 2011: Department of Agroenvironmental Sciences and Technologies; 2011. p. S251–2.
Google Scholar
Yang Y, Jiang L, Che H, Cao X, Luo D. Identification of a novel subgroup 16SrII-U phytoplasma associated with papaya little leaf disease. Int J Syst Evol Microbiol. 2016;66(9):3485–91.
Article
PubMed
Google Scholar
Pilkington LJ, Gurr GM, Fletcher MJ, Nikandrow A, Elliott E. Vector status of three leafhopper species for Australian lucerne yellows phytoplasma. Aust J Entomol. 2004;43(4):366–73.
Article
Google Scholar
Esmailzadeh-Hosseini S, Mirzaie A, Jafari-Nodooshan A, Rahimian H. The first report of transmission of a phytoplasma associated with sesame phyllody by Orosius albicinctus in Iran. Aust Plant Dis Notes. 2007;2(1):33–4.
Article
Google Scholar
Ikten C, Catal M, Yol E, Ustun R, Furat S, Toker C, Uzun B. Molecular identification, characterization and transmission of phytoplasmas associated with sesame phyllody in Turkey. Eur J Plant Pathol. 2014;139(1):217–29.
Article
Google Scholar
IRPCM P: Spiroplasma Working Team–Phytoplasma taxonomy group, 2004.‘Candidatus Phytoplasma’, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects. Int J Syst Evol Microbiol 2004, 54(4):1243-1255.
Lee I-M, Bottner-Parker KD, Zhao Y, Bertaccini A, Davis RE. Differentiation and classification of phytoplasmas in the pigeon pea witches’-broom group (16SrIX): an update based on multiple gene sequence analysis. Int J Syst Evol Microbiol. 2012;62(9):2279–85.
Article
PubMed
Google Scholar
Valiunas D, Jomantiene R, Ivanauskas A, Urbonaite I, Sneideris D, Davis RE. Molecular identification of Phytoplasmas infecting diseased pine trees in the UNESCO-protected Curonian spit of Lithuania. Forests. 2015;6(7):2469–83.
Article
Google Scholar