De Angelis M, Piccolo M, Vannini L, Siragusa S, De Giacomo A, Serrazzanetti DI, et al. Fecal microbiota and metabolome of children with autism and pervasive developmental disorder not otherwise specified. PLoS One. 2013;8(10):e76993.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kang DW, Park JG, Ilhan ZE, Wallstrom G, Labaer J, Adams JB, et al. Reduced incidence of Prevotella and other fermenters in intestinal microflora of autistic children. PLoS One. 2013;8(7):e68322.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams JB, Johansen LJ, Powell LD, Quig D, Rubin RA. Gastrointestinal flora and gastrointestinal status in children with autism--comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 2011;11:22.
Article
PubMed
PubMed Central
Google Scholar
Parracho HM, Bingham MO, Gibson GR, McCartney AL. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol. 2005;54(Pt 10):987–91.
Article
PubMed
Google Scholar
Tomova A, Husarova V, Lakatosova S, Bakos J, Vlkova B, Babinska K, et al. Gastrointestinal microbiota in children with autism in Slovakia. Physiol Behav. 2015;138:179–87.
Article
CAS
PubMed
Google Scholar
Foster JA, McVey Neufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci. 2013;36(5):305–12.
Article
CAS
PubMed
Google Scholar
Desbonnet L, Clarke G, Shanahan F, Dinan TG, Cryan JF. Microbiota is essential for social development in the mouse. Mol Psychiatry. 2014;19(2):146–8.
Article
CAS
PubMed
Google Scholar
Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gilbert JA, Krajmalnik-Brown R, Porazinska DL, Weiss SJ, Knight R. Toward effective probiotics for autism and other neurodevelopmental disorders. Cell. 2013;155(7):1446–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701–12.
Article
CAS
PubMed
Google Scholar
Cassani B, Villablanca EJ, De Calisto J, Wang S, Mora JR. Vitamin a and immune regulation: role of retinoic acid in gut-associated dendritic cell education, immune protection and tolerance. Mol Asp Med. 2012;33(1):63–76.
Article
CAS
Google Scholar
McCullough FS, Northrop-Clewes CA, Thurnham DI. The effect of vitamin a on epithelial integrity. Proc Nutr Soc. 1999;58(2):289–93.
Article
CAS
PubMed
Google Scholar
Amit-Romach E, Uni Z, Cheled S, Berkovich Z, Reifen R. Bacterial population and innate immunity-related genes in rat gastrointestinal tract are altered by vitamin A-deficient diet. J Nutr Biochem. 2009;20(1):70–7.
Article
CAS
PubMed
Google Scholar
Cha HR, Chang SY, Chang JH, Kim JO, Yang JY, Kim CH, et al. Downregulation of Th17 cells in the small intestine by disruption of gut flora in the absence of retinoic acid. J Immunol. 2010;184(12):6799–806.
Article
CAS
PubMed
Google Scholar
Zhang H, Liao X, Sparks JB, Luo XM. Dynamics of gut microbiota in autoimmune lupus. Appl Environ Microbiol. 2014;80(24):7551–60.
Article
PubMed
PubMed Central
Google Scholar
Hyman SL, Stewart PA, Schmidt B, Cain U, Lemcke N, Foley JT, et al. Nutrient intake from food in children with autism. Pediatrics. 2012;130(Suppl 2):S145–53.
Article
PubMed
PubMed Central
Google Scholar
Sun C, Xia W, Zhao Y, Li N, Zhao D, Wu L. Nutritional status survey of children with autism and typically developing children aged 4-6 years in Heilongjiang Province, China. J Nutr Sci. 2013;2:e16.
PubMed
PubMed Central
Google Scholar
Shabayek MM. Assessment of the nutritional status of children with special needs in Alexandria: I. Nutrient intake and food consumption. J Egypt Public Health Assoc. 2004;79(3–4):225–41.
PubMed
Google Scholar
Liu X, Liu J, Xiong X, Yang T, Hou N, Liang X, et al. Correlation between Nutrition and Symptoms: Nutritional Survey of Children with Autism Spectrum Disorder in Chongqing, China. Nutrients. 2016;8(5). doi:10.3390/nu8050294.
Nemeroff CB, Weinberger D, Rutter M, MacMillan HL, Bryant RA, Wessely S, et al. DSM-5: a collection of psychiatrist views on the changes, controversies, and future directions. BMC Med. 2013;11:202.
Article
PubMed
PubMed Central
Google Scholar
Jiang W, Yu Q, Gong M, Chen L, Wen EY, Bi Y, et al. Vitamin a deficiency impairs postnatal cognitive function via inhibition of neuronal calcium excitability in hippocampus. J Neurochem. 2012;121(6):932–43.
Article
CAS
PubMed
Google Scholar
WHO. Global prevalence of vitamin a deficiency in populations at risk 1995–2005. In: WHO global database on vitamin a deficiency. Geneva: World Health Organization; 2009.
Google Scholar
WHO. Guildeline:vitamin a supplementation in infants and children 6–59 months of age. Geneva: World Health Organization; 2011.
Google Scholar
Wei H, Huang HM, Li TY, Qu P, Liu YX, Chen J. Marginal vitamin a deficiency affects lung maturation in rats from prenatal to adult stage. J Nutr Sci Vitaminol (Tokyo). 2009;55(3):208–14.
Article
CAS
Google Scholar
Zeng J, Chen L, Wang Z, Chen Q, Fan Z, Jiang H, et al. Marginal vitamin a deficiency facilitates Alzheimer's pathogenesis. Acta Neuropathol. 2017;133(6):967–82.
Article
CAS
PubMed
Google Scholar
Zeng J, Li T, Gong M, Jiang W, Yang T, Chen J, et al. Marginal vitamin a deficiency exacerbates memory deficits following Abeta1-42 injection in rats. Curr Alzheimer Res. 2017;14(5):562–70.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Onis M, Onyango AW, Van den Broeck J, Chumlea WC, Martorell R. Measurement and standardization protocols for anthropometry used in the construction of a new international growth reference. Food Nutr Bull. 2004;25(1 Suppl):S27–36.
Article
PubMed
Google Scholar
Alabdali A, Al-Ayadhi L, El-Ansary A. A key role for an impaired detoxification mechanism in the etiology and severity of autism spectrum disorders. Behav Brain Funct. 2014;10:14.
Article
PubMed
PubMed Central
Google Scholar
Rapin I, Goldman S. The Brazilian CARS: a standardized screening tool for autism. J Pediatr. 2008;84(6):473–5.
Article
Google Scholar
Marteleto MR, Pedromonico MR. Validity of autism behavior checklist (ABC): preliminary study. Rev Bras Psiquiatr. 2005;27(4):295–301.
Article
PubMed
Google Scholar
Miller KW, Yang CS. An isocratic high-performance liquid chromatography method for the simultaneous analysis of plasma retinol, alpha-tocopherol, and various carotenoids. Anal Biochem. 1985;145(1):21–6.
Article
CAS
PubMed
Google Scholar
Ebstein RP, Mankuta D, Yirmiya N, Malavasi F. Are retinoids potential therapeutic agents in disorders of social cognition including autism? FEBS Lett. 2011;585(11):1529–36.
Article
CAS
PubMed
Google Scholar
Riebold M, Mankuta D, Lerer E, Israel S, Zhong S, Nemanov L, et al. All-trans retinoic acid upregulates reduced CD38 transcription in lymphoblastoid cell lines from autism spectrum disorder. Mol Med. 2011;17(7–8):799–806.
CAS
PubMed
PubMed Central
Google Scholar
Higashida H, Munesue T. CD38 and autism spectrum disorders. No To Hattatsu. 2013;45(6):431–5.
PubMed
Google Scholar
Munesue T, Yokoyama S, Nakamura K, Anitha A, Yamada K, Hayashi K, et al. Two genetic variants of CD38 in subjects with autism spectrum disorder and controls. Neurosci Res. 2010;67(2):181–91.
Article
CAS
PubMed
Google Scholar
Jin D, Liu HX, Hirai H, Torashima T, Nagai T, Lopatina O, et al. CD38 is critical for social behaviour by regulating oxytocin secretion. Nature. 2007;446(7131):41–5.
Article
CAS
PubMed
Google Scholar
Hu VW. Is retinoic acid-related orphan receptor-alpha (RORA) a target for gene-environment interactions contributing to autism? Neurotoxicology. 2012;33(6):1434–5.
Article
CAS
PubMed
Google Scholar
Sarachana T, Hu VW. Genome-wide identification of transcriptional targets of RORA reveals direct regulation of multiple genes associated with autism spectrum disorder. Mol Autism. 2013;4(1):14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sarachana T, Xu M, Wu RC, Hu VW. Sex hormones in autism: androgens and estrogens differentially and reciprocally regulate RORA, a novel candidate gene for autism. PLoS One. 2011;6(2):e17116.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nguyen A, Rauch TA, Pfeifer GP, Hu VW. Global methylation profiling of lymphoblastoid cell lines reveals epigenetic contributions to autism spectrum disorders and a novel autism candidate gene, RORA, whose protein product is reduced in autistic brain. FASEB J. 2010;24(8):3036–51.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8.
Article
CAS
PubMed
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Amato KR, Yeoman CJ, Kent A, Righini N, Carbonero F, Estrada A, et al. Habitat degradation impacts black howler monkey (Alouatta Pigra) gastrointestinal microbiomes. ISME J. 2013;7(7):1344–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schloss PD, Gevers D, Westcott SL. Reducing the effects of PCR amplification and sequencing artifacts on 16S rRNA-based studies. PLoS One. 2011;6(12):e27310.
Article
CAS
PubMed
PubMed Central
Google Scholar
Maughan H, Wang PW, Diaz Caballero J, Fung P, Gong Y, Donaldson SL, et al. Analysis of the cystic fibrosis lung microbiota via serial Illumina sequencing of bacterial 16S rRNA hypervariable regions. PLoS One. 2012;7(10):e45791.
Article
CAS
PubMed
PubMed Central
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.
Article
PubMed
PubMed Central
Google Scholar
Zhang C, Li S, Yang L, Huang P, Li W, Wang S, et al. Structural modulation of gut microbiota in life-long calorie-restricted mice. Nat Commun. 2013;4:2163.
PubMed
PubMed Central
Google Scholar
Megson MN. Is autism a G-alpha protein defect reversible with natural vitamin a? Med Hypotheses. 2000;54(6):979–83.
Article
CAS
PubMed
Google Scholar
Shearer KD, Stoney PN, Morgan PJ, McCaffery PJ. A vitamin for the brain. Trends Neurosci. 2012;35(12):733–41.
Article
CAS
PubMed
Google Scholar
Zhang X, Chen K, Wei XP, Qu P, Liu YX, Chen J, et al. Perinatal vitamin a status in relation to neurodevelopmental outcome at two years of age. Int J Vitam Nutr Res. 2009;79(4):238–49.
Article
CAS
PubMed
Google Scholar
Sodhi RK, Singh N. Retinoids as potential targets for Alzheimer's disease. Pharmacol Biochem Behav. 2014;120:117–23.
Article
CAS
PubMed
Google Scholar
Fragoso YD, Stoney PN, McCaffery PJ. The evidence for a beneficial role of vitamin a in multiple sclerosis. CNS Drugs. 2014;28(4):291–9.
Article
CAS
PubMed
Google Scholar
Takeda A, Nyssen OP, Syed A, Jansen E, Bueno-de-Mesquita B, Gallo V. Vitamin a and carotenoids and the risk of Parkinson's disease: a systematic review and meta-analysis. Neuroepidemiology. 2014;42(1):25–38.
Article
PubMed
Google Scholar
Soden ME, Chen L. Fragile X protein FMRP is required for homeostatic plasticity and regulation of synaptic strength by retinoic acid. J Neurosci. 2010;30(50):16910–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stehlin-Gaon C, Willmann D, Zeyer D, Sanglier S, Van Dorsselaer A, Renaud JP, et al. All-trans retinoic acid is a ligand for the orphan nuclear receptor ROR beta. Nat Struct Biol. 2003;10(10):820–5.
Article
CAS
PubMed
Google Scholar
Bolte S. Is autism curable? Dev Med Child Neurol. 2014;56(10):927–31.
Article
PubMed
Google Scholar
Olsson MB, Westerlund J, Lundstrom S, Giacobini M, Fernell E, Gillberg C. "recovery" from the diagnosis of autism - and then? Neuropsychiatr Dis Treat. 2015;11:999–1005.
Article
PubMed
PubMed Central
Google Scholar
Finegold SM, Dowd SE, Gontcharova V, Liu C, Henley KE, Wolcott RD, et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16(4):444–53.
Article
CAS
PubMed
Google Scholar
Gondalia SV, Palombo EA, Knowles SR, Cox SB, Meyer D, Austin DW. Molecular characterisation of gastrointestinal microbiota of children with autism (with and without gastrointestinal dysfunction) and their neurotypical siblings. Autism Res. 2012;5(6):419–27.
Article
PubMed
Google Scholar
Son JS, Zheng LJ, Rowehl LM, Tian X, Zhang Y, Zhu W, et al. Comparison of fecal microbiota in children with autism Spectrum disorders and Neurotypical siblings in the Simons simplex collection. PLoS One. 2015;10(10):e0137725.
Article
PubMed
PubMed Central
Google Scholar
Williams BL, Hornig M, Buie T, Bauman ML, Cho Paik M, Wick I, et al. Impaired carbohydrate digestion and transport and mucosal dysbiosis in the intestines of children with autism and gastrointestinal disturbances. PLoS One. 2011;6(9):e24585.
Article
CAS
PubMed
PubMed Central
Google Scholar
Strati F, Cavalieri D, Albanese D, De Felice C, Donati C, Hayek J, et al. New evidences on the altered gut microbiota in autism spectrum disorders. Microbiome. 2017;5(1):24.
Article
PubMed
PubMed Central
Google Scholar
Zhou Y, Zhi F. Lower level of Bacteroides in the gut microbiota is associated with inflammatory bowel disease: a meta-analysis. Biomed Res Int. 2016;2016:5828959.
PubMed
PubMed Central
Google Scholar
Troy EB, Kasper DL. Beneficial effects of Bacteroides Fragilis polysaccharides on the immune system. Front Biosci (Landmark Ed). 2010;15:25–34.
Article
CAS
Google Scholar
Liu HX, Hu Y, Wan YJ. Microbiota and bile acid profiles in retinoic acid-primed mice that exhibit accelerated liver regeneration. Oncotarget. 2016;7(2):1096–106.
Article
PubMed
Google Scholar
Wang L, Christophersen CT, Sorich MJ, Gerber JP, Angley MT, Conlon MA. Low relative abundances of the mucolytic bacterium Akkermansia muciniphila and Bifidobacterium spp. in feces of children with autism. Appl Environ Microbiol. 2011;77(18):6718–21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salazar N, Gueimonde M, Hernandez-Barranco AM, Ruas-Madiedo P. De los Reyes-Gavilan CG. Exopolysaccharides produced by intestinal Bifidobacterium strains act as fermentable substrates for human intestinal bacteria. Appl Environ Microbiol. 2008;74(15):4737–45.
Article
CAS
PubMed
PubMed Central
Google Scholar