Turner TR, James EK, Poole PS. The plant microbiome. Genome Biol. 2013;14:209.
Article
PubMed
PubMed Central
Google Scholar
Knief C. Analysis of plant microbe interactions in the era of next generation sequencing technologies. Front Plant Sci. 2014;5:216.
Article
PubMed
PubMed Central
Google Scholar
Truyens S, Weyens N, Cuypers A, Vangronsveld J. Bacterial seed endophytes. genera, vertical transmission and interaction with plants: Bacterial seed endophytes. Environ Microbiol Rep. 2015;7:40–50.
Article
Google Scholar
Glassner H, Zchori-Fein E, Compant S, Sessitsch A, Katzir N, Portnoy V, Yaron S. Characterization of endophytic bacteria from cucurbit fruits with potential benefits to agriculture in melons (Cucumis melo L.). FEMS Microbiol Ecol. 2015;91:fiv074.
Article
PubMed
Google Scholar
Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes. recent developments and applications. FEMS Microbiol Lett. 2008;278:1–9.
Article
CAS
PubMed
Google Scholar
Reinhold-Hurek B, Hurek T. Living inside plants: bacterial endophytes. Curr Opin Plant Biol. 2011;14:435–43.
Article
PubMed
Google Scholar
Zhang HW, Song YC, Tan RX. Biology and chemistry of endophytes. Nat Prod Rep. 2006;23:753.
Article
CAS
PubMed
Google Scholar
Hardoim PR, van Overbeek LS, van Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008;16:463–71.
Article
CAS
PubMed
Google Scholar
Bright M, Bulgheresi S. A complex journey: transmission of microbial symbionts. Nat Rev Microbiol. 2010;8:218–30.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zilber-Rosenberg I, Rosenberg E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol Rev. 2008;32:723–35.
Article
CAS
PubMed
Google Scholar
Berg G. Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol. 2009;84:11–8.
Article
CAS
PubMed
Google Scholar
Bulgarelli D, Schlaeppi K, Spaepen S, van Themaat EVL, Schulze-Lefert P. Structure and functions of the bacterial microbiota of plants. Annu Rev Plant Biol. 2013;64:807–38.
Article
CAS
PubMed
Google Scholar
Glick BR, Cheng Z, Czarny J, Duan J. Promotion of plant growth by ACC deaminase-producing soil bacteria. Eur J Plant Pathol. 2007;119:329–39.
Article
CAS
Google Scholar
Lugtenberg BJJ, Chin-A-Woeng TFC, Bloemberg GV. Microbe–plant interactions: principles and mechanisms. Antonie Van Leeuwenhoek. 2002;81:373–83.
Article
CAS
PubMed
Google Scholar
Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8:623–33.
CAS
PubMed
Google Scholar
Chee-Sanford JC, Williams II MM, Davis AS, Sims GK. Do microorganisms influence seed-bank dynamics? Weed Sci. 2006;54:575–87.
Article
CAS
Google Scholar
Heneidak S, Khalik KA. Seed coat diversity in some tribes of Cucurbitaceae: implications for taxonomy and species identification. Acta Bot Bras. 2015;29:129–42.
Article
Google Scholar
Schaefer H, Renner SS. Cucurbitaceae. In: Kubitzki K, editor. The Families and Genera of Vascular Plants. Flowering Plants. Eudicots: Sapindales, Cucurbitales, Myrtaceae. London, New York: Springer Heidelberg Dordrecht; 2011. 10:112–74.
Schaefe H, Renner SS. Phylogenetic relationships in the order Cucurbitales and a new classification of the gourd family (Cucurbitaceae). Taxon. 2011;60:122–38.
Google Scholar
Brothwell D, Brothwell P. Food in Antiquity. A Survey of the Diet of Early Peoples. New York: Fredrick A. Praeger; 1969.
Google Scholar
Robinson RW, Decker-Walters DS. Cucurbits (Crop Production Science in Horticulture). 1st ed. Wallingford: CAB international; 1997.
Google Scholar
Lebeda A, Widrlechner MP, Staub J, Ezura H, Zalapa J, Kristkova E. Cucurbits (Cucurbitaceae; Cucumis spp., Cucurbita Spp., Citrullus Spp.). In: Singh RJ, editor. Genetic resources, chromosome engineering, and crop improvement. Boca Raton: CRC Press; 2005. p. 272–344.
Google Scholar
Schaefer H, Heibl C, Renner SS. Gourds afloat: a dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc R Soc B Biol Sci. 2009;276:843–51.
Article
Google Scholar
Fürnkranz M, Lukesch B, Müller H, Huss H, Grube M, Berg G. Microbial diversity inside pumpkins: Microhabitat-specific communities display a high antagonistic potential against phytopathogens. Microb Ecol. 2012;63:418–28.
Article
PubMed
Google Scholar
Fürnkranz M, Adam E, Müller H, Grube M, Huss H, Winkler J, Berg G. Promotion of growth, health and stress tolerance of Styrian oil pumpkins by bacterial endophytes. Eur J Plant Pathol. 2012;134:509–19.
Article
Google Scholar
Hardoim PR, Hardoim CCP, van Overbeek LS, van Elsas JD. Dynamics of Seed-Borne Rice Endophytes on Early Plant Growth Stages. PLoS One. 2012;7:e30438.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnston-Monje D, Raizada MN. Conservation and diversity of seed associated endophytes in Zea across boundaries of evolution, ethnography and ecology. PLoS One. 2011;6:e20396.
Article
CAS
PubMed
PubMed Central
Google Scholar
Links MG, Demeke T, Gräfenhan T, Hill JE, Hemmingsen SM, Dumonceaux TJ. Simultaneous profiling of seed-associated bacteria and fungi reveals antagonistic interactions between microorganisms within a shared epiphytic microbiome on Triticum and Brassica seeds. New Phytol. 2014;202:542–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation. Bioinformatics. 2007;23:127–8.
Article
CAS
PubMed
Google Scholar
Letunic I, Bork P. Interactive Tree Of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 2011;39(suppl):W475–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chelius MK, Triplett EW. The diversity of Archaea and bacteria in association with the roots of Zea mays L. Microb Ecol. 2001;41:252–63.
Article
CAS
PubMed
Google Scholar
Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT, Porras-Alfaro A, Kuske CR, Tiedje JM. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 2014;42:D633–42.
Article
CAS
PubMed
Google Scholar
Hall T. BioEdit: An important software for molecular biology. GERF Bull Biosci. 2011;2:60–1.
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0. Mol Biol Evol. 2013;30:2725–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hino S, Wilson PW. Nitrogen fixation by a facultative Bacillus. J Bacteriol. 1958;75:403.
CAS
PubMed
PubMed Central
Google Scholar
Nautiyal C. An effecient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett. 1999;170:265–70.
Article
CAS
PubMed
Google Scholar
Bric JM, Bostock RM, Silverstone SE. Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Appl Environ Microbiol. 1991;57:535–8.
CAS
PubMed
PubMed Central
Google Scholar
Cox CD. Deferration of laboratory media and assays for ferric and ferrous ions. Methods Enzymol. 1994;235:315–29.
Article
CAS
PubMed
Google Scholar
Pérez-Miranda S, Cabirol N, George-Téllez R, Zamudio-Rivera LS, Fernández FJ. O-CAS, a fast and universal method for siderophore detection. J Microbiol Methods. 2007;70:127–31.
Article
PubMed
Google Scholar
Kasana RC, Salwan R, Dhar H, Dutt S, Gulati A. A rapid and easy method for the detection of microbial cellulases on agar plates using Gram’s iodine. Curr Microbiol. 2008;57:503–7.
Article
CAS
PubMed
Google Scholar
Soares MM, da Silva R, Gomes E. Screening of bacterial strains for pectinolytic activity: characterization of the polygalacturonase produced by Bacillus sp. Rev Microbiol. 1999;30:299–303.
CAS
Google Scholar
Brown MRW, Foster JHS. A simple diagnostic milk medium for Pseudomonas aeruginosa. J Clin Pathol. 1970;23:172–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Egamberdieva D, Kucharova Z. Selection for root colonising bacteria stimulating wheat growth in saline soils. Biol Fertil Soils. 2009;45:563–71.
Article
Google Scholar
Barret M, Briand M, Bonneau S, Préveaux A, Valière S, Bouchez O, Hunault G, Simoneau P, Jacques M-A. Emergence shapes the structure of the seed microbiota. Appl Environ Microbiol. 2015;81:1257–66.
Article
PubMed
Google Scholar
Shetty AA, Rana R, Buckseth T, Preetham SP. Waste utilization in cucurbits: A review. Waste Biomass Valorization. 2012;3:363–8.
Article
Google Scholar
Jacks TJ, Hensarling TP, Yatsu LY. Cucurbit seeds: I. Characterization and uses of oils and proteins. A review. Econ Bot. 1971;26:135–41.
Article
Google Scholar
The United States Department of Agriculture (USDA) National Nutrient Database for Standard Reference. 2011. http://ndb.nal.usda.gov/. Accessed 15 Jul 2015.
Munsell HE, Williams LO, Guild LP, Troescher CB, Nightingale G, Harris RS. Composition of food plants of Central America. III. Guatemala. J Food Sci. 1950;15:34–52.
Article
CAS
Google Scholar
Achi OK. Traditional fermented protein condiments in Nigeria. Afr J Biotechnol. 2005;4(13):1612–21.
CAS
Google Scholar
Bankole SA, Adenusi AA, Lawal OS, Adesanya OO. Occurrence of aflatoxin B1 in food products derivable from “egusi” melon seeds consumed in southwestern Nigeria. Food Control. 2010;21:974–6.
Article
CAS
Google Scholar
Maheshwari DK. Plant Growth and Health Promoting Bacteria. Heidelberg: Springer Berlin Heidelberg; 2011.
Book
Google Scholar
Borriss R. Use of plant-associated Bacillus strains as biofertilizers and biocontrol agents in agriculture. In: Maheshwari DK, editor. Bacteria in agrobiology: Plant growth responses. Heidelberg: Springer Berlin Heidelberg; 2011.
Google Scholar
McSpadden Gardener BB, Fravel DR. Biological control of plant pathogens: research, commercialization, and application in the USA. Plant Health Prog. 2002.
Lacey LA, Frutos R, Kaya HK, Vail P. Insect pathogens as biological control agents: Do they have a future? Biol Control. 2001;21:230–48.
Article
Google Scholar
Mundt JO, Hinkle NF. Bacteria within ovules and seeds. Appl Environ Microbiol. 1976;32:694–8.
CAS
PubMed
PubMed Central
Google Scholar
Mihong G, Gang C, Qing LG, Juan H, Xiang H, Gong ZL, Lei W, Xia YL. Antagonism watermelon Fusarium wilt of endophytic bacteria screening and identification. Int J Digit Content Technol Its Appl. 2013;7:1097.
Google Scholar
Nga NTT, Giau NT, Long NT, Lübeck M, Shetty NP, de Neergaard E, Thuy TTT, Kim PV, Jørgensen HJL. Rhizobacterially induced protection of watermelon against Didymella bryoniae. J Appl Microbiol. 2010;109:567–82.
CAS
PubMed
Google Scholar
Yun L, Ming L. Isolation of endophytic bacteria from hami melon and screening of antagonistic bacteria. J Shihezi University (Natural Science). 2004;S1.
Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q. Bacillus subtilis SQR 9 can control Fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils. 2011;47:495–506.
Article
CAS
Google Scholar
Li L, Ma J, Li Y, Wang Z, Gao T, Wang Q. Screening and partial characterization of Bacillus with potential applications in biocontrol of cucumber Fusarium wilt. Crop Prot. 2012;35:29–35.
Article
CAS
Google Scholar
Romero D, Pérez-García A, Rivera ME, Cazorla FM, de Vicente A. Isolation and evaluation of antagonistic bacteria towards the cucurbit powdery mildew fungus Podosphaera fusca. Appl Microbiol Biotechnol. 2004;64:263–9.
Article
CAS
PubMed
Google Scholar
Trutmann P, Keane PJ, Merriman PR. Reduction of sclerotial inoculum of Sclerotinia sclerotiorum with Coniothyrium minitans. Soil Biol Biochem. 1980;12:461–5.
Article
Google Scholar
Tsavkelova EA, Cherdyntseva TA, Netrusov AI. Auxin production by bacteria associated with orchid roots. Microbiology. 2005;74:46–53.
Article
CAS
Google Scholar
Zimmer W, Hundeshagen B, Niederau E. Demonstration of the indolepyruvate decarboxylase gene homologue in different auxin-producing species of the Enterobacteriaceae. Can J Microbiol. 1994;4:1072–6.
Article
Google Scholar
Lal S, Tabacchioni S. Ecology and biotechnological potential of Paenibacillus polymyxa: a minireview. Indian J Microbiol. 2009;49:2–10.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lemaire-Chamley M. Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol. 2005;139:750–69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nuss ET, Tanumihardjo SA. Maize: A paramount staple crop in the context of global nutrition. Compr Rev Food Sci Food Saf. 2010;9:417–36.
Article
CAS
Google Scholar
Hudson C, Hudson SP, Hecht T, MacKenzie J. Protein source tryptophan versus pharmaceutical grade tryptophan as an efficacious treatment for chronic insomnia. Nutr Neurosci. 2005;8:121–7.
Article
CAS
PubMed
Google Scholar
Whitaker TW. Archeological cucurbits. Econ Bot. 1981;35:460–6.
Article
Google Scholar
Postma JA, Lynch JP. Complementarity in root architecture for nutrient uptake in ancient maize/bean and maize/bean/squash polycultures. Ann Bot. 2012;110:521–34.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lakshmi JA, Kaul P. Nutritional potential, bioaccessibility of minerals and functionality of watermelon (Citrullus vulgaris) seeds. LWT - Food Sci Technol. 2011;44:1821–6.
Article
Google Scholar
Asiegbu JE. Some biochemical evaluation of fluted pumpkin seed. J Sci Food Agric. 1987;40:151–5.
Article
CAS
Google Scholar
Wani AA, Sogi DS, Singh P, Wani IA, Shivhare US. Characterisation and functional properties of watermelon (Citrullus lanatus) seed proteins. J Sci Food Agric. 2011;91:113–21.
Article
CAS
PubMed
Google Scholar
Hudson SP, Hudson CJ. Defatted meal from squash seeds containing protein-bound tryptophan and carbohydrate source (glucose, maltose, sucrose) for facilitating transport across the blood brain barrier; useful for inducing sleep. Patent US. 2003;6503543:B1.
Google Scholar
Smith CR, Shekleton MC, Wolff IA, Jones Q. Seed protein sources—amino acid composition and total protein content of various plant seeds. Econ Bot. 1959;13:132–50.
Article
CAS
Google Scholar
Abeles FB, Morgan PW, Saltveit ME. Ethylene in Plant Biology. 2nd ed. San Diego: Academic Press, Inc.; 1992.
Google Scholar
Saleem M, Arshad M, Hussain S, Bhatti AS. Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol. 2007;34:635–48.
Article
CAS
PubMed
Google Scholar
Wahab AA. Nitrogen fixation by Bacillus strains isolated from the rhizosphere of Ammophila arenaria. Plant Soil. 1975;42:703–8.
Article
Google Scholar
Seldin L, Van Elsas JD, Penido EGC. Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots. Int J Syst Bacteriol. 1984;34:451–6.
Article
CAS
Google Scholar
Coelho MRR, Weid I, Zahner V, Seldin L. Characterization of nitrogen-fixing Paenibacillus species by polymerase chain reaction–restriction fragment length polymorphism analysis of part of genes encoding 16S rRNA and 23S rRNA and by multilocus enzyme electrophoresis. FEMS Microbiol Lett. 2003;222:243–50.
Article
CAS
PubMed
Google Scholar
Weyens N, van der Lelie D, Taghavi S, Newman L, Vangronsveld J. Exploiting plant–microbe partnerships to improve biomass production and remediation. Trends Biotechnol. 2009;27:591–8.
Article
CAS
PubMed
Google Scholar
Zlotnikov KM, Zlotnikov AK, Kaparullina EN, Doronina NV. Phylogenetic position and phosphate solubilization activity of lactic acid bacteria associated with different plants. Microbiology. 2013;82:393–6.
Article
CAS
Google Scholar
Rodríguez H, Fraga R, Gonzalez T, Bashan Y. Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil. 2006;287:15–21.
Article
Google Scholar
Duijff BJ, Recorbet G, Bakker PA, Loper JE, Lemanceau P. Microbial antagonism at the root level is involved in the suppression of Fusarium wilt by the combination of nonpathogenic Fusarium oxysporum Fo47 and Pseudomonas putida WCS358. Phytopathology. 1999;89:1073–9.
Article
CAS
PubMed
Google Scholar
Fiedler H-P, Krastel P, Müller J, Gebhardt K, Zeeck A. Enterobactin: the characteristic catecholate siderophore of Enterobacteriaceae is produced by Streptomyces species. FEMS Microbiol Lett. 2001;196:147–51.
Article
CAS
PubMed
Google Scholar
Chen XH, Koumoutsi A, Scholz R, Eisenreich A, Schneider K, Heinemeyer I, Morgenstern B, Voss B, Hess WR, Reva O, Junge H, Voigt B, Jungblut PR, Vater J, Süssmuth R, Liesegang H, Strittmatter A, Gottschalk G, Borriss R. Comparative analysis of the complete genome sequence of the plant growth–promoting bacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol. 2007;25:1007–14.
Article
CAS
PubMed
Google Scholar
Paungfoo-Lonhienne C, Lonhienne TG, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S. Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci. 2008;105:4524–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Derrien M, van Hylckama Vlieg JET. Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol. 2015;23:354–66.
Article
CAS
PubMed
Google Scholar
Galland L. The gut microbiome and the brain. J Med Food. 2014;17:1261–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Di Cagno R, Coda R, De Angelis M, Gobbetti M. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013;33:1–10.
Article
PubMed
Google Scholar
Preidis GA, Versalovic J. Targeting the Human Microbiome With Antibiotics, Probiotics, and Prebiotics: Gastroenterology Enters the Metagenomics Era. Gastroenterology. 2009;136:2015–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cutting SM. Bacillus probiotics. Food Microbiol. 2011;28:214–20.
Article
PubMed
Google Scholar
Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M et al. Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant Microbe Interact. 2012;25:28–36.
Article
CAS
PubMed
Google Scholar