EFSA, ECDC. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2012. EFSA J. 2014;12(2):3547.
Google Scholar
EFSA, ECDC. The European Union summary report on antimicrobial resistance in zoonotic and indicator bacteria from humans, animals and food in 2010. EFSA J. 2012;10(3):2598.
Google Scholar
Russell AD. Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect Dis. 2003;3(12):794–803.
Article
CAS
PubMed
Google Scholar
Karatzas KAG, Webber MA, Jorgensen F, Woodward MJ, Piddock LJV, Humphrey TJ. Prolonged treatment of Salmonella enterica serovar Typhimurium with commercial disinfectants selects for multiple antibiotic resistance, increased efflux and reduced invasiveness. J Antimicrob Chemother. 2007;60(5):947–55.
Article
CAS
PubMed
Google Scholar
Whitehead RN, Overton TW, Kemp CL, Webber MA. Exposure of Salmonella enterica serovar Typhimurium to high level biocide challenge can select multidrug resistant mutants in a single step. PLoS One. 2011;6(7):e22833.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chapman JS. Biocide resistance mechanisms. Int Biodeterior Biodegrad. 2003;51(2):133–8.
Article
CAS
Google Scholar
McMurry LM, Oethinger M, Levy SB. Triclosan targets lipid synthesis. Nature. 1998;394(6693):531–2.
Article
CAS
PubMed
Google Scholar
Maillard JY. Bacterial target sites for biocide action. J Appl Microbiol. 2002;92(Suppl):16S–27.
Article
PubMed
Google Scholar
Levy SB. Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol. 2002;92:65S–71.
Article
PubMed
Google Scholar
Rensch U, Nishino K, Klein G, Kehrenberg C. Salmonella enterica serovar Typhimurium multidrug efflux pumps EmrAB and AcrEF support the major efflux system ArcAB in decreased susceptibility to triclosan. Int J Antimicrob Agents. 2014;44(2):179–80.
Article
CAS
PubMed
Google Scholar
Webber MA, Randall LP, Cooles S, Woodward MJ, Piddock LJ. Triclosan resistance in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother. 2008;62(1):83–91.
Article
CAS
PubMed
Google Scholar
Webber MA, Coldham NG, Woodward MJ, Piddock LJV. Proteomic analysis of triclosan resistance in Salmonella enterica serovar Typhimurium. J Antimicrob Chemother. 2008;62(1):92–7.
Article
CAS
PubMed
Google Scholar
Birošová L, Mikulášová M. Development of triclosan and antibiotic resistance in Salmonella enterica serovar Typhimurium. J Med Microbiol. 2009;58(Pt 4):436–41.
Article
PubMed
Google Scholar
McMurry LM, Oethinger M, Levy SB. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol Lett. 1998;166(2):305–9.
Article
CAS
PubMed
Google Scholar
Sivaraman S, Zwahlen J, Bell AF, Hedstrom L, Tonge PJ. Structure − activity studies of the inhibition of FabI, the Enoyl Reductase from Escherichia coli, by Triclosan: kinetic analysis of mutant FabIs. Biochemistry. 2003;42(15):4406–13.
Article
CAS
PubMed
Google Scholar
Bailey AM, Constantinidou C, Ivens A, Garvey MI, Webber MA, Coldham N, et al. Exposure of Escherichia coli and Salmonella enterica serovar Typhimurium to triclosan induces a species-specific response, including drug detoxification. J Antimicrob Chemother. 2009;64(5):973–85.
Article
CAS
PubMed
Google Scholar
Maloy SR, Stewart VJ, Taylor RK. Genetic Analysis of Pathogenic Bacteria: A Laboratory Manual. Cold Spring Harbor, NY: Spring Harbor Laboratory Press; 1996.
Google Scholar
Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jelsbak L, Thomsen LE, Wallrodt I, Jensen PR, Olsen JE. Polyamines are required for virulence in Salmonella enterica serovar Typhimurium. PLoS One. 2012;7(4):e36149.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nielsen LN, Larsen MH, Skovgaard S, Kastbjerg V, Westh H, Gram L, et al. Staphylococcus aureus but not Listeria monocytogenes adapt to triclosan and adaptation correlates with increased fabI expression and agr deficiency. BMC Microbiol. 2013;13(1):177.
Article
PubMed Central
PubMed
Google Scholar
Walsh SE, Maillard JY, Russell AD, Catrenich CE, Charbonneau DL, Bartolo RG. Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. J Hosp Infect. 2003;55(2):98–107.
Article
CAS
PubMed
Google Scholar
Gantzhorn MR, Pedersen K, Olsen JE, Thomsen LE. Biocide and antibiotic susceptibility of Salmonella isolates obtained before and after cleaning at six Danish pig slaughterhouses. Int J Food Microbiol. 2014;181:53–9.
Article
CAS
PubMed
Google Scholar
Richardson EJ, Limaye B, Inamdar H, Datta A, Manjari KS, Pullinger GD, et al. Genome sequences of Salmonella enterica serovar Typhimurium, Choleraesuis, Dublin, and Gallinarum strains of well- defined virulence in food-producing animals. J Bacteriol. 2011;193(12):3162–3.
Article
PubMed Central
CAS
PubMed
Google Scholar
Martins M, Couto I, Viveiros M, Amaral L. Identification of efflux-mediated multi-drug resistance in bacterial clinical isolates by two simple methods. Methods Mol Biol. 2010;642:143–57.
Article
CAS
PubMed
Google Scholar
Thomsen L, Gottlieb C, Gottschalk S, Wodskou T, Kristensen H-H, Gram L, et al. The heme sensing response regulator HssR in Staphylococcus aureus but not the homologous RR23 in Listeria monocytogenes modulates susceptibility to the antimicrobial peptide plectasin. BMC Microbiol. 2010;10(1):307.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wallrodt I, Jelsbak L, Thorndahl L, Thomsen LE, Lemire S, Olsen JE. The putative thiosulfate sulfurtransferases PspE and GlpE contribute to virulence of Salmonella Typhimurium in the mouse model of systemic disease. PLoS One. 2013;8(8):e70829.
Article
PubMed Central
CAS
PubMed
Google Scholar
R Development Core Team. A language and environment for statistical computing. version 2140th ed. Vienna, Austria: R Foundation for Statistical Computing; 2011.
Google Scholar
Bates D, Maechler M, Bolker B, Walker S. lme4: Linear mixed-effects models using Eigen and S4. 10-4th ed. 2013.
Google Scholar
Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biom J. 2008;50(3):346–63.
Article
PubMed
Google Scholar
Jones PW, Collins P, Aitken MM. Passive protection of calves against experimental infection with Salmonella typhimurium. Vet Rec. 1988;123(21):536–41.
Article
CAS
PubMed
Google Scholar
Rensch U, Klein G, Kehrenberg C. Analysis of triclosan-selected Salmonella enterica mutants of eight serovars revealed increased aminoglycoside susceptibility and reduced growth rates. PloS One. 2013;8(10):e78310.
Article
PubMed Central
CAS
PubMed
Google Scholar
Russell AD. Bacterial resistance to disinfectants: present knowledge and future problems. J Hosp Infect. 1999;43(Suppl):S57–68.
Article
PubMed
Google Scholar
Condell O, Sheridan Á, Power KA, Bonilla-Santiago R, Sergeant K, Renaut J, et al. Comparative proteomic analysis of Salmonella tolerance to the biocide active agent triclosan. J Proteomics. 2012;75(14):4505–19.
Article
CAS
PubMed
Google Scholar
Gomez Escalada M, Harwood JL, Maillard J-Y, Ochs D. Triclosan inhibition of fatty acid synthesis and its effect on growth of Escherichia coli and Pseudomonas aeruginosa. J Antimicrob Chemother. 2005;55(6):879–82.
Article
Google Scholar
Heath RJ, Rock CO. Microbiology: A triclosan-resistant bacterial enzyme. Nature. 2000;406(6792):145–6.
Article
CAS
PubMed
Google Scholar
Heath RJ, Rubin JR, Holland DR, Zhang E, Snow ME, Rock CO. Mechanism of triclosan inhibition of bacterial fatty acid synthesis. J Biol Chem. 1999;274(16):11110–4.
Article
CAS
PubMed
Google Scholar
Archer CD, Elliott T. Transcriptional control of the nuo operon which encodes the energy-conserving NADH dehydrogenase of Salmonella typhimurium. J Bacteriol. 1995;177(9):2335–42.
PubMed Central
CAS
PubMed
Google Scholar
Chuanchuen R, Pathanasophon P, Khemtong S, Wannaprasat W, Padungtod P. Susceptibilities to antimicrobials and disinfectants in Salmonella isolates obtained from poultry and swine in Thailand. J Vet Sci. 2008;70(6):595–601.
Article
Google Scholar
Randall LP, Cooles SW, Coldham NG, Penuela EG, Mott AC, Woodward MJ, et al. Commonly used farm disinfectants can select for mutant Salmonella enterica serovar Typhimurium with decreased susceptibility to biocides and antibiotics without compromising virulence. J Antimicrob Chemother. 2007;60(6):1273–80.
Article
CAS
PubMed
Google Scholar
Baucheron S, Imberechts H, Chaslus-Dancia E, Cloeckaert A. The ArcB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar Typhimurium phage type DT204. Microb Drug Resist. 2002;8(4):281–9.
Article
CAS
PubMed
Google Scholar
Akiba M, Nakaoka Y, Kida M, Ishioka Y, Sameshima T, Yoshii N, et al. Changes in antimicrobial susceptibility in a population of Salmonella enterica serovar Dublin isolated from cattle in Japan from 1976 to 2005. J Antimicrob Chemother. 2007;60(6):1235–42.
Article
CAS
PubMed
Google Scholar
Barrero MA, Pietralonga PA, Schwarz DG, Silva Jr A, Paula SO, Moreira MA. Effect of the inhibitors phenylalanine arginyl ß-naphthylamide (PAßN) and 1-(1-naphthylmethyl)-piperazine (NMP) on expression of genes in multidrug efflux systems of Escherichia coli isolates from bovine mastitis. Res Vet Sci. 2014;97(2):176–81.
Article
PubMed
Google Scholar
Huovinen P. Resistance to trimethoprim-sulfamethoxazole. Clin Infect Dis. 2001;32(11):1608–14.
Article
CAS
PubMed
Google Scholar
Thorrold CA, Letsoalo ME, Dusé AG, Marais E. Efflux pump activity in fluoroquinolone and tetracycline resistant Salmonella and E. coli implicated in reduced susceptibility to household antimicrobial cleaning agents. Int J Food Microbiol. 2007;113(3):315–20.
Article
CAS
PubMed
Google Scholar
Nikaido H, Pagès J-M. Broad specificity efflux pumps and their role in multidrug resistance of gram negative bacteria. FEMS Microbiol Rev. 2012;36(2):340–63.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hernandez A, Ruiz FM, Romero A, Martinez JL. The binding of triclosan to SmeT, the repressor of the multidrug efflux pump SmeDEF, induces antibiotic resistance in Stenotrophomonas maltophilia. PLoS Pathog. 2011;7(6):e1002103.
Article
PubMed Central
CAS
PubMed
Google Scholar