Davey ME, O'Toole GA. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev. 2000;64:847–67.
Article
PubMed Central
CAS
PubMed
Google Scholar
O'Toole G, Kaplan HB, Kolter R. Biofilm formation as microbial development. Annu Rev Microbiol. 2000;54:49–79.
Article
PubMed
Google Scholar
Kearns DB. A field guide to bacterial swarming motility. Nat Rev Micro. 2010;8:634–44.
Article
CAS
Google Scholar
Daniels R, Vanderleyden J, Michiels J. Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev. 2004;28:261–89.
Article
CAS
PubMed
Google Scholar
Lai S, Tremblay J, Déziel E. Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol. 2009;11:126–36.
Article
CAS
PubMed
Google Scholar
Overhage J, Bains M, Brazas MD, Hancock REW. Swarming of Pseudomonas aeruginosa is a complex adaptation leading to increased production of virulence factors and antibiotic resistance. J Bacteriol. 2008;190:2671–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tambalo DD, Yost CK, Hynes MF. Characterization of swarming motility in Rhizobium leguminosarum bv. viciae. FEMS Microbiol Lett. 2010;307:165–74.
Article
CAS
PubMed
Google Scholar
Verstraeten N, Braeken K, Debkumari B, Fauvart M, Fransaer J, Vermant J, et al. Living on a surface: swarming and biofilm formation. Trends Microbiol. 2008;16:496–506.
Article
CAS
PubMed
Google Scholar
Caiazza NC, Merritt JH, Brothers KM, O'Toole GA. Inverse regulation of biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol. 2007;189:3603–12.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuchma SL, Brothers KM, Merritt JH, Liberati NT, Ausubel FM, O'Toole GA. BifA, a cyclic-di-GMP phosphodiesterase, inversely regulates biofilm formation and swarming motility by Pseudomonas aeruginosa PA14. J Bacteriol. 2007;189:8165–78.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuchma SL, Griffin EF, O'Toole GA. Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility. J Bacteriol. 2012;194:5388–403.
Article
PubMed Central
CAS
PubMed
Google Scholar
Merritt JH, Brothers KM, Kuchma SL, O'Toole GA. SadC reciprocally influences biofilm formation and swarming motility via modulation of exopolysaccharide production and flagellar function. J Bacteriol. 2007;189:8154–64.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pratt JT, McDonough E, Camilli A. PhoB regulates motility, biofilms, and cyclic di-GMP in Vibrio cholerae. J Bacteriol. 2009;191:6632–42.
Article
PubMed Central
CAS
PubMed
Google Scholar
Trimble MJ, McCarter LL. Bis-(3′-5′)-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus. Proc Natl Acad Sci U S A. 2011;108:18079–84.
Article
PubMed Central
CAS
PubMed
Google Scholar
Oldroyd GED, Downie JA. Coordinating nodule morphogenesis with rhizobial infection in legumes. Annu Rev Plant Biol. 2008;59:519–46.
Article
CAS
PubMed
Google Scholar
Fujishige NA, Kapadia NN, De Hoff PL, Hirsch AM. Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol. 2006;56:195–206.
Article
CAS
PubMed
Google Scholar
Rinaudi L, Fujishige NA, Hirsch AM, Banchio E, Zorreguieta Á, Giordano W. Effects of nutritional and environmental conditions on Sinorhizobium meliloti biofilm formation. Res Microbiol. 2006;157:867–75.
Article
CAS
PubMed
Google Scholar
Rinaudi LV, González JE. The low-molecular-weight fraction of exopolysaccharide II from Sinorhizobium meliloti is a crucial determinant of biofilm formation. J Bacteriol. 2009;191:7216–24.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sorroche FG, Spesia MB, Zorreguieta Á, Giordano W. A positive correlation between bacterial autoaggregation and biofilm formation in native Sinorhizobium meliloti isolates from Argentina. Appl Environ Microbiol. 2012;78:4092–101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rinaudi LV, Giordano W. An integrated view of biofilm formation in rhizobia. FEMS Microbiol Lett. 2010;304:1–11.
Article
CAS
PubMed
Google Scholar
Fujishige NA, Lum MR, De Hoff PL, Whitelegge JP, Faull KF, Hirsch AM. Rhizobium common nod genes are required for biofilm formation. Mol Microbiol. 2008;67:504–15.
Article
CAS
PubMed
Google Scholar
Wells DH, Chen EJ, Fisher RF, Long SR. ExoR is genetically coupled to the ExoS-ChvI two-component system and located in the periplasm of Sinorhizobium meliloti. Mol Microbiol. 2007;64:647–64.
Article
CAS
PubMed
Google Scholar
Santos MR, Marques AT, Becker JD, Moreira LM. The Sinorhizobium meliloti EmrR regulator is required for efficient colonization of Medicago sativa root nodules. Mol Plant-Microbe Interact. 2014;27:388–99.
Article
CAS
PubMed
Google Scholar
Soto MJ, Fernández-Pascual M, Sanjuán J, Olivares J. A fadD mutant of Sinorhizobium meliloti shows multicellular swarming migration and is impaired in nodulation efficiency on alfalfa roots. Mol Microbiol. 2002;43:371–82.
Article
CAS
PubMed
Google Scholar
Nogales J, Domínguez-Ferreras A, Amaya-Gómez C, van Dillewijn P, Cuéllar V, Sanjuán J, et al. Transcriptome profiling of a Sinorhizobium meliloti fadD mutant reveals the role of rhizobactin 1021 biosynthesis and regulation genes in the control of swarming. BMC Genomics. 2010;11:157.
Article
PubMed Central
PubMed
Google Scholar
Nogales J, Bernabéu-Roda L, Cuéllar V, Soto MJ. ExpR is not required for swarming but promotes sliding in Sinorhizobium meliloti. J Bacteriol. 2012;194:2027–35.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gao M, Coggin A, Yagnik K, Teplitski M. Role of specific quorum-sensing signals in the regulation of exopolysaccharide II production within Sinorhizobium meliloti spreading colonies. PLoS One. 2012;7:e42611.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hindré T, Brüggemann H, Buchrieser C, Héchard Y. Transcriptional profiling of Legionella pneumophila biofilm cells and the influence of iron on biofilm formation. Microbiology. 2008;154:30–41.
Article
PubMed
Google Scholar
Trappetti C, Potter AJ, Paton AW, Oggioni MR, Paton JC. LuxS mediates iron-dependent biofilm formation, competence, and fratricide in Streptococcus pneumoniae. Infec Immun. 2011;79:4550–8.
Article
CAS
Google Scholar
Banin E, Vasil ML, Greenberg EP. Iron and Pseudomonas aeruginosa biofilm formation. Proc Natl Acad Sci U S A. 2005;102:11076–81.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ojha A, Hatfull GF. The role of iron in Mycobacterium smegmatis biofilm formation: the exochelin siderophore is essential in limiting iron conditions for biofilm formation but not for planktonic growth. Mol Microbiol. 2007;66:468–83.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wu Y, Outten FW. IscR controls iron-dependent biofilm formation in Escherichia coli by regulating type I fimbria expression. J Bacteriol. 2009;191:1248–57.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pech-Canul Á, Nogales J, Miranda-Molina A, Álvarez L, Geiger O, Soto MJ, et al. FadD is required for utilization of endogenous fatty acids released from membrane lipids. J Bacteriol. 2011;193:6295–304.
Article
PubMed Central
CAS
PubMed
Google Scholar
Amaya-Gómez C. Transcriptomic approach for the identification of genes and signals playing a role in swarming motility of Sinorhizobium meliloti: Connection with biofilm formation and symbiosis. PhD thesis. University of Granada Spain, Department of Microbiology; 2013. http://hdl.handle.net/10481/29516.
Chao T-C, Buhrmester J, Hansmeier N, Pühler A, Weidner S. Role of the regulatory gene rirA in the transcriptional response of Sinorhizobium meliloti to iron limitation. Appl Environ Microbiol. 2005;71:5969–82.
Article
PubMed Central
CAS
PubMed
Google Scholar
May T, Okabe S. Enterobactin is required for biofilm development in reduced-genome Escherichia coli. Environ Microbiol. 2011;13:3149–62.
Article
CAS
PubMed
Google Scholar
Persmark M, Pittman P, Buyer JS, Schwyn B, Gill PR, Neilands JB. Isolation and structure of rhizobactin 1021, a siderophore from the alfalfa symbiont Rhizobium meliloti 1021. J Am Chem Soc. 1993;115:3950–6.
Article
CAS
Google Scholar
Mireles JR, Toguchi A, Harshey RM. Salmonella enterica Serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol. 2001;183:5848–54.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kuiper I, Lagendijk EL, Pickford R, Derrick JP, Lamers GEM, Thomas-Oates JE, et al. Characterization of two Pseudomonas putida lipopeptide biosurfactants, putisolvin I and II, which inhibit biofilm formation and break down existing biofilms. Mol Microbiol. 2004;51:97–13.
Article
CAS
PubMed
Google Scholar
Davey ME, Caiazza NC, O'Toole GA. Rhamnolipid surfactant production affects biofilm architecture in Pseudomonas aeruginosa PAO1. J Bacteriol. 2003;185:1027–36.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boles BR, Thoendel M, Singh PK. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol. 2005;57:1210–23.
Article
CAS
PubMed
Google Scholar
Pamp SJ, Tolker-Nielsen T. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa. J Bacteriol. 2007;189:2531–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Daniels R, Reynaert S, Hoekstra H, Verreth C, Janssens J, Braeken K, et al. Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci U S A. 2006;103:14965–70.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lamont IL, Beare PA, Ochsner U, Vasil AI, Vasil ML. Siderophore-mediated signaling regulates virulence factor production in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A. 2002;99:7072–7.
Article
PubMed Central
CAS
PubMed
Google Scholar
Toro N, Olivares J. Characterization of a large plasmid of Rhizobium meliloti involved in enhancing nodulation. Mol Gen Genet. 1986;202:331–5.
Article
CAS
Google Scholar
Johnson M, Cockayne A, Williams PH, Morrissey JA. Iron-responsive regulation of biofilm formation in Staphylococcus aureus involves Fur-dependent and Fur-independent mechanisms. J Bacteriol. 2005;187:8211–5.
Article
PubMed Central
CAS
PubMed
Google Scholar
Banin E, Brady KM, Greenberg EP. Chelator-induced dispersal and killing of Pseudomonas aeruginosa cells in a biofilm. Appl Environ Microbiol. 2006;72:2064–9.
Article
PubMed Central
CAS
PubMed
Google Scholar
Singh PK, Parsek MR, Greenberg EP, Welsh MJ. A component of innate immunity prevents bacterial biofilm development. Nature. 2002;417:552–5.
Article
CAS
PubMed
Google Scholar
Mey AR, Craig SA, Payne SM. Characterization of Vibrio cholerae RyhB: the RyhB regulon and role of ryhB in biofilm formation. Infect Immun. 2005;73:5706–19.
Article
PubMed Central
CAS
PubMed
Google Scholar
Glick R, Gilmour C, Tremblay J, Satanower S, Avidan O, Déziel E, et al. Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol. 2010;192:2973–80.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lindsay WL, Schwab AP. The chemistry of iron and its availability to plants. J Plant Nutr. 1982;5:821–42.
Article
CAS
Google Scholar
Kobayashi T, Nishizawa NK. Iron uptake, translocation, and regulation in higher plants. Annu Rev Plant Biol. 2012;63:131–52.
Article
CAS
PubMed
Google Scholar
Ryan RP, Dow JM. Communication with a growing family: diffusible signal factor (DSF) signaling in bacteria. Trends Microbiol. 2011;19:145–52.
Article
CAS
PubMed
Google Scholar
Tiaden A, Spirig T, Hilbi H. Bacterial gene regulation by alpha-hydroxyketone signaling. Trends Microbiol. 2010;18:288–97.
Article
CAS
PubMed
Google Scholar
Winans SC. A new family of quorum sensing pheromones synthesized using S-adenosylmethionine and Acyl-CoAs. Mol Microbiol. 2011;79:1403–6.
Article
CAS
PubMed
Google Scholar
Pérez-Montaño F, Jiménez-Guerrero I, Del Cerro P, Baena-Ropero I, López-Baena FJ, Ollero FJ, et al. The symbiotic biofilm of Sinorhizobium fredii SMH12, necessary for successful colonization and symbiosis of Glycine max cv. Osumi, is regulated by quorum sensing systems and inducing flavonoids via NodD1. PLoS One. 2014;9:e105901.
Article
PubMed Central
PubMed
Google Scholar
Lynch D, O'Brien J, Welch T, Clarke P, Cuiv PO, Crosa JH, et al. Genetic organization of the region encoding regulation, biosynthesis, and transport of rhizobactin 1021, a siderophore produced by Sinorhizobium meliloti. J Bacteriol. 2001;183:2576–85.
Article
PubMed Central
CAS
PubMed
Google Scholar
Viguier C, Cuiv PO, Clarke P, O'Connell M. RirA is the iron response regulator of the rhizobactin 1021 biosynthesis and transport genes in Sinorhizobium meliloti 2011. FEMS Microbiol Lett. 2005;246:235–42.
Article
CAS
PubMed
Google Scholar
Sambrook J, Russell D. Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Pres; 2001.
Google Scholar
Beringer JE. R factor transfer in Rhizobium leguminosarum. J Gen Microbiol. 1974;84:188–98.
Article
CAS
PubMed
Google Scholar
Robertsen BK, Åman P, Darvill AG, McNeil M, Albersheim P. The structure of acidic extracellular polysaccharides secreted by Rhizobium leguminosarum and Rhizobium trifolii. Plant Physiol. 1981;67:389–400.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cheng HP, Walker GC. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol. 1998;180:5183–91.
PubMed Central
CAS
PubMed
Google Scholar
Simon R, Priefer U, Pühler A. A broad host range mobilization system for In vivo genetic engineering: Transposon mutagenesis in Gram negative bacteria. Nat Biotech. 1983;1:784–91.
Article
CAS
Google Scholar
Casadesús J, Olivares J. Rough and fine linkage mapping of the Rhizobium meliloti chromosome. Mol Gen Genet. 1979;174:203–9.
Article
PubMed
Google Scholar
Meade HM, Signer ER. Genetic mapping of Rhizobium meliloti. Proc Natl Acad Sci U S A. 1977;74:2076–8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Russo DM, Williams A, Edwards A, Posadas DM, Finnie C, Dankert M, et al. Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J Bacteriol. 2006;188:4474–86.
Article
PubMed Central
CAS
PubMed
Google Scholar
Olivares J, Casadesús J, Bedmar EJ. Method for testing degree of infectivity of Rhizobium melioti strains. Appl Environ Microbiol. 1980;39:967–70.
PubMed Central
CAS
PubMed
Google Scholar