Hoch JA: Two-Component Signal Transduction. 1995, Washington, DC: American Society for Microbiology Press
Google Scholar
Nixon BT, Ronson CW, Ausubel FM: Two-component regulatory systems responsive to environmental stimuli share strongly conserved domains with the nitrogen assimilation regulatory genes ntrB and ntrC. Proc Natl Acad Sci USA. 1986, 83: 7850-7854. 10.1073/pnas.83.20.7850.
Article
CAS
PubMed Central
PubMed
Google Scholar
Iuchi S, Weiner L: Cellular and molecular physiology of Escherichia coli in the adaptation to aerobic environments. J Biochem (Tokyo). 1996, 120: 1055-1063.
Article
CAS
Google Scholar
Bauer CE, Elsen S, Bird TH: Mechanisms for redox control of gene expression. Annual Review of Microbiology. 1999, 53: 495-523. 10.1146/annurev.micro.53.1.495.
Article
CAS
PubMed
Google Scholar
Hidalgo E, Ding H, Demple B: Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem Sci. 1997, 22: 207-210. 10.1016/S0968-0004(97)01068-2.
Article
CAS
PubMed
Google Scholar
Demple B: Study of redox-regulated transcription factors in prokaryotes. Methods. 1997, 11: 267-278. 10.1006/meth.1996.0421.
Article
CAS
PubMed
Google Scholar
Ding H, Demple B: Glutathione-mediated destabilization in vitro of [2Fe-2S] centers in the SoxR regulatory protein. Proc Natl Acad Sci USA. 1996, 93: 9449-9453. 10.1073/pnas.93.18.9449.
Article
CAS
PubMed Central
PubMed
Google Scholar
Nunoshiba T, Hidalgo E, Amabile Cuevas CF, Demple B: Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J Bacteriol. 1992, 174: 6054-6060.
CAS
PubMed Central
PubMed
Google Scholar
Rocha ER, Owens G, Smith CJ: The redox-sensitive transcriptional activator OxyR regulates the peroxide response regulon in the obligate anaerobe Bacteroides fragilis. J Bacteriol. 2000, 182: 5059-5069. 10.1128/JB.182.18.5059-5069.2000.
Article
CAS
PubMed Central
PubMed
Google Scholar
Zheng M, Storz G: Redox sensing by prokaryotic transcription factors. Biochem Pharmacol. 2000, 59: 1-6. 10.1016/S0006-2952(99)00289-0.
Article
CAS
PubMed
Google Scholar
Storz G, Altuvia S: OxyR regulon. Methods Enzymol. 1994, 234: 217-223. full_text.
Article
CAS
PubMed
Google Scholar
Tao K, Makino K, Yonei S, Nakata A, Shinagawa H: Molecular cloning and nucleotide sequencing of oxyR, the positive regulatory gene of a regulon for an adaptive response to oxidative stress in Escherichia coli: homologies between OxyR protein and a family of bacterial activator proteins. Mol Gen Genet. 1989, 218: 371-376. 10.1007/BF00332397.
Article
CAS
PubMed
Google Scholar
Sawers G: The aerobic/anaerobic interface. Curr Opin Microbiol. 1999, 2: 181-187. 10.1016/S1369-5274(99)80032-0.
Article
CAS
PubMed
Google Scholar
Unden G, Schirawski J: The oxygen-responsive transcriptional regulator FNR of Escherichia coli: the search for signals and reactions. Mol Microbiol. 1997, 25: 205-210. 10.1046/j.1365-2958.1997.4731841.x.
Article
CAS
PubMed
Google Scholar
Unden G, Achebach S, Holighaus G, Tran HG, Wackwitz B, Zeuner Y: Control of FNR function of Escherichia coli by O2 and reducing conditions. J Mol Microbiol Biotechnol. 2002, 4: 263-268.
CAS
PubMed
Google Scholar
Gunsalus RP, Park SJ: Aerobic-anaerobic gene regulation in Escherichia coli: control by the ArcAB and Fnr regulons. Res Microbiol. 1994, 145: 437-450. 10.1016/0923-2508(94)90092-2.
Article
CAS
PubMed
Google Scholar
Spiro S: The FNR family of transcriptional regulators. Antonie Van Leeuwenhoek. 1994, 66: 23-36. 10.1007/BF00871630.
Article
CAS
PubMed
Google Scholar
Jordan PA, Thomson AJ, Ralph ET, Guest JR, Green J: FNR is a direct oxygen sensor having a biphasic response curve. FEBS Lett. 1997, 416: 349-352. 10.1016/S0014-5793(97)01219-2.
Article
CAS
PubMed
Google Scholar
Becker S, Holighaus G, Gabrielczyk T, Unden G: O2 as the regulatory signal for FNR-dependent gene regulation in Escherichia coli. J Bacteriol. 1996, 178: 4515-4521.
CAS
PubMed Central
PubMed
Google Scholar
Kiley PJ, Beinert H: Oxygen sensing by the global regulator, FNR: the role of the iron-sulfur cluster. FEMS Microbiol Rev. 1998, 22: 341-352. 10.1111/j.1574-6976.1998.tb00375.x.
Article
CAS
PubMed
Google Scholar
Crack J, Green J, Thomson AJ: Mechanism of oxygen sensing by the bacterial transcription factor fumarate-nitrate reduction (FNR). J Biol Chem. 2004, 279: 9278-9286. 10.1074/jbc.M309878200.
Article
CAS
PubMed
Google Scholar
Constantinidou C, Hobman JL, Griffiths L, Patel MD, Penn CW, Cole JA, Overton TW: A reassessment of the FNR regulon and transcriptomic analysis of the effects of nitrate, nitrite, NarXL, and NarQP as Escherichia coli K12 adapts from aerobic to anaerobic growth. J Biol Chem. 2006, 281: 4802-4815. 10.1074/jbc.M512312200.
Article
CAS
PubMed
Google Scholar
Oshima T, Aiba H, Masuda Y, Kanaya S, Sugiura M, Wanner BL, Mori H, Mizuno T: Transcriptome analysis of all two-component regulatory system mutants of Escherichia coli K-12. Mol Microbiol. 2002, 46: 281-291. 10.1046/j.1365-2958.2002.03170.x.
Article
CAS
PubMed
Google Scholar
Chang DE, Smalley DJ, Conway T: Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol. 2002, 45: 289-306. 10.1046/j.1365-2958.2002.03001.x.
Article
CAS
PubMed
Google Scholar
Georgellis D, Kwon O, Lin EC: Quinones as the redox signal for the Arc two-component system of bacteria. Science. 2001, 292: 2314-2316. 10.1126/science.1059361.
Article
CAS
PubMed
Google Scholar
Iuchi S, Lin EC: arcA (dye), a global regulatory gene in Escherichia coli mediating repression of enzymes in aerobic pathways. Proc Natl Acad Sci USA. 1988, 85: 1888-1892. 10.1073/pnas.85.6.1888.
Article
CAS
PubMed Central
PubMed
Google Scholar
Iuchi S, Cameron DC, Lin EC: A second global regulator gene (arcB) mediating repression of enzymes in aerobic pathways of Escherichia coli. J Bacteriol. 1989, 171: 868-873.
CAS
PubMed Central
PubMed
Google Scholar
Iuchi S, Matsuda Z, Fujiwara T, Lin EC: The arcB gene of Escherichia coli encodes a sensor-regulator protein for anaerobic repression of the arc modulon. Mol Microbiol. 1990, 4: 715-727. 10.1111/j.1365-2958.1990.tb00642.x.
Article
CAS
PubMed
Google Scholar
Liu X, De Wulf P: Probing the ArcA-P modulon of Escherichia coli by whole genome transcriptional analysis and sequence recognition profiling. J Biol Chem. 2004, 279: 12588-12597. 10.1074/jbc.M313454200.
Article
CAS
PubMed
Google Scholar
Georgellis D, Lynch AS, Lin EC: In vitro phosphorylation study of the Arc two-component signal transduction system of Escherichia coli. J Bacteriol. 1997, 179: 5429-5435.
CAS
PubMed Central
PubMed
Google Scholar
Malpica R, Sandoval GR, Rodriguez C, Franco B, Georgellis D: Signaling by the arc two-component system provides a link between the redox state of the quinone pool and gene expression. Antioxid Redox Signal. 2006, 8: 781-795. 10.1089/ars.2006.8.781.
Article
CAS
PubMed
Google Scholar
Iuchi S: Phosphorylation/dephosphorylation of the receiver module at the conserved aspartate residue controls transphosphorylation activity of histidine kinase in sensor protein ArcB of Escherichia coli. J Biol Chem. 1993, 268: 23972-23980.
CAS
PubMed
Google Scholar
Iuchi S, Lin EC: Mutational analysis of signal transduction by ArcB, a membrane sensor protein responsible for anaerobic repression of operons involved in the central aerobic pathways in Escherichia coli. J Bacteriol. 1992, 174: 3972-3980.
CAS
PubMed Central
PubMed
Google Scholar
Jeon Y, Lee YS, Han JS, Kim JB, Hwang DS: Multimerization of phosphorylated and non-phosphorylated ArcA is necessary for the response regulator function of the Arc two-component signal transduction system. J Biol Chem. 2001, 276: 40873-40879. 10.1074/jbc.M104855200.
Article
CAS
PubMed
Google Scholar
Nystrom T, Larsson C, Gustafsson L: Bacterial defense against aging: role of the Escherichia coli ArcA regulator in gene expression, readjusted energy flux and survival during stasis. Embo J. 1996, 15: 3219-3228.
CAS
PubMed Central
PubMed
Google Scholar
Lee YS, Han JS, Jeon Y, Hwang DS: The arc two-component signal transduction system inhibits in vitro Escherichia coli chromosomal initiation. J Biol Chem. 2001, 276: 9917-9923. 10.1074/jbc.M008629200.
Article
CAS
PubMed
Google Scholar
Mika F, Hengge R: A two-component phosphotransfer network involving ArcB, ArcA, and RssB coordinates synthesis and proteolysis of sigmaS (RpoS) in E. coli. Genes Dev. 2005, 19: 2770-2781. 10.1101/gad.353705.
Article
CAS
PubMed Central
PubMed
Google Scholar
Lu S, Killoran PB, Fang FC, Riley LW: The global regulator ArcA controls resistance to reactive nitrogen and oxygen intermediates in Salmonella enterica serovar Enteritidis. Infect Immun. 2002, 70: 451-461. 10.1128/IAI.70.2.451-461.2002.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wong SM, Alugupalli KR, Ram S, Akerley BJ: The ArcA regulon and oxidative stress resistance in Haemophilus influenzae. Mol Microbiol. 2007, 64: 1375-1390. 10.1111/j.1365-2958.2007.05747.x.
Article
CAS
PubMed Central
PubMed
Google Scholar
Berggren RE, Wunderlich A, Ziegler E, Schleicher M, Duke RC, Looney D, Fang FC: HIV gp120-specific cell-mediated immune responses in mice after oral immunization with recombinant Salmonella. J Acquir Immune Defic Syndr Hum Retrovirol. 1995, 10: 489-495. 10.1097/00042560-199510050-00001.
Article
CAS
PubMed
Google Scholar
Georgellis D, Kwon O, De Wulf P, Lin EC: Signal decay through a reverse phosphorelay in the Arc two-component signal transduction system. J Biol Chem. 1998, 273: 32864-32869. 10.1074/jbc.273.49.32864.
Article
CAS
PubMed
Google Scholar
Kwon O, Georgellis D, Lin EC: Phosphorelay as the sole physiological route of signal transmission by the arc two-component system of Escherichia coli. J Bacteriol. 2000, 182: 3858-3862. 10.1128/JB.182.13.3858-3862.2000.
Article
CAS
PubMed Central
PubMed
Google Scholar
Malpica R, Franco B, Rodriguez C, Kwon O, Georgellis D: Identification of a quinone-sensitive redox switch in the ArcB sensor kinase. Proc Natl Acad Sci USA. 2004, 101: 13318-13323. 10.1073/pnas.0403064101.
Article
CAS
PubMed Central
PubMed
Google Scholar
Georgellis D, Kwon O, Lin EC: Amplification of signaling activity of the Arc two-component system of Escherichia coli by anaerobic metabolites. An in vitro study with different protein modules. J Biol Chem. 1999, 274: 35950-35954. 10.1074/jbc.274.50.35950.
Article
CAS
PubMed
Google Scholar
Matsushika A, Mizuno T: A dual-signaling mechanism mediated by the ArcB hybrid sensor kinase containing the histidine-containing phosphotransfer domain in Escherichia coli. J Bacteriol. 1998, 180: 3973-3977.
CAS
PubMed Central
PubMed
Google Scholar
Iuchi S, Lin EC: Purification and phosphorylation of the Arc regulatory components of Escherichia coli. J Bacteriol. 1992, 174: 5617-5623.
CAS
PubMed Central
PubMed
Google Scholar
Halsey TA, Vazquez-Torres A, Gravdahl DJ, Fang FC, Libby SJ: The ferritin-like Dps protein is required for Salmonella enterica serovar Typhimurium oxidative stress resistance and virulence. Infect Immun. 2004, 72: 1155-1158. 10.1128/IAI.72.2.1155-1158.2004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Jang S, Imlay JA: Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. J Biol Chem. 2007, 282: 929-937. 10.1074/jbc.M607646200.
Article
CAS
PubMed
Google Scholar
Carlioz A, Touati D: Isolation of superoxide dismutase mutants in Escherichia coli: is superoxide dismutase necessary for aerobic life?. Embo J. 1986, 5: 623-630.
CAS
PubMed Central
PubMed
Google Scholar
Datsenko KA, Wanner BL: One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. PNAS. 2000, 97: 6640-6645. 10.1073/pnas.120163297.
Article
CAS
PubMed Central
PubMed
Google Scholar
Wei D, Li M, Zhang X, Xing L: An improvement of the site-directed mutagenesis method by combination of megaprimer, one-side PCR and DpnI treatment. Anal Biochem. 2004, 331: 401-403. 10.1016/j.ab.2004.04.019.
Article
CAS
PubMed
Google Scholar
Lu S, Manges AR, Xu Y, Fang FC, Riley LW: Analysis of virulence of clinical isolates of Salmonella enteritidis in vivo and in vitro. Infect Immun. 1999, 67: 5651-5657.
CAS
PubMed Central
PubMed
Google Scholar
Macomber L, Rensing C, Imlay JA: Intracellular copper does not catalyze the formation of oxidative DNA damage in Escherichia coli. J Bacteriol. 2007, 189: 1616-1626. 10.1128/JB.01357-06.
Article
CAS
PubMed Central
PubMed
Google Scholar
Muller PY, Janovjak H, Miserez AR, Dobbie Z: Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques. 2002, 32: 1372-1374.
CAS
PubMed
Google Scholar
Pfaffl MW, Horgan GW, Dempfle L: Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002, 30: e36-10.1093/nar/30.9.e36.
Article
PubMed Central
PubMed
Google Scholar