Wanner BL: Phosphorous assimilation and control of the phosphate regulon. Escherichia coli and Salmonella: Cellular and Molecular Biology. Edited by: Neidhart RCI, Ingraham JL, Lin ECC, Low KB, Magasanik B, Reznikoff WS, Riley M, Schaechter M, Umbrager HE. 1996, American Society for Microbiology, Washington, DC, 1: 1357-1381.
Google Scholar
Harris RM, Webb DC, Howitt SM, Cox GB: Characterization of PitA and PitB from Escherichia coli. J Bacteriol. 2001, 183 (17): 5008-5014. 10.1128/JB.183.17.5008-5014.2001.
Article
CAS
PubMed Central
PubMed
Google Scholar
Rosenberg H, Gerdes RG, Chegwidden K: Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol. 1977, 131 (2): 505-511.
CAS
PubMed Central
PubMed
Google Scholar
Rosenberg H, Gerdes RG, Harold FM: Energy coupling to the transport of inorganic phosphate in Escherichia coli K12. Biochem J. 1979, 178 (1): 133-137.
Article
CAS
PubMed Central
PubMed
Google Scholar
Amemura M, Makino K, Shinagawa H, Kobayashi A, Nakata A: Nucleotide sequence of the genes involved in phosphate transport and regulation of the phosphate regulon in Escherichia coli. J Mol Biol. 1985, 184 (2): 241-250. 10.1016/0022-2836(85)90377-8.
Article
CAS
PubMed
Google Scholar
Surin BP, Rosenberg H, Cox GB: Phosphate-specific transport system of Escherichia coli: nucleotide sequence and gene-polypeptide relationships. J Bacteriol. 1985, 161 (1): 189-198.
CAS
PubMed Central
PubMed
Google Scholar
Webb DC, Rosenberg H, Cox GB: Mutational analysis of the Escherichia coli phosphate-specific transport system, a member of the traffic ATPase (or ABC) family of membrane transporters. A role for proline residues in transmembrane helices. J Biol Chem. 1992, 267 (34): 24661-24668.
CAS
PubMed
Google Scholar
Willsky GR, Malamy MH: Characterization of two genetically separable inorganic phosphate transport systems in Escherichia coli. J Bacteriol. 1980, 144 (1): 356-365.
CAS
PubMed Central
PubMed
Google Scholar
Yamada M, Makino K, Amemura M, Shinagawa H, Nakata A: Regulation of the phosphate regulon of Escherichia coli: analysis of mutant phoB and phoR genes causing different phenotypes. J Bacteriol. 1989, 171 (10): 5601-5606.
CAS
PubMed Central
PubMed
Google Scholar
Kimura S, Makino K, Shinagawa H, Amemura M, Nakata A: Regulation of the phosphate regulon of Escherichia coli: characterization of the promoter of the pstS gene. Mol Gen Genet. 1989, 215 (3): 374-380. 10.1007/BF00427032.
Article
CAS
PubMed
Google Scholar
Makino K, Shinagawa H, Amemura M, Kimura S, Nakata A, Ishihama A: Regulation of the phosphate regulon of Escherichia coli. Activation of pstS transcription by PhoB protein in vitro. J Mol Biol. 1988, 203 (1): 85-95. 10.1016/0022-2836(88)90093-9.
Article
CAS
PubMed
Google Scholar
Makino K, Shinagawa H, Amemura M, Nakata A: Nucleotide sequence of the phoB gene, the positive regulatory gene for the phosphate regulon of Escherichia coli K-12. J Mol Biol. 1986, 190 (1): 37-44. 10.1016/0022-2836(86)90073-2.
Article
CAS
PubMed
Google Scholar
Hulett FM: The signal-transduction network for Pho regulation in Bacillus subtilis. Mol Microbiol. 1996, 19 (5): 933-939. 10.1046/j.1365-2958.1996.421953.x.
Article
CAS
PubMed
Google Scholar
Sola-Landa A, Rodriguez-Garcia A, Apel AK, Martin JF: Target genes and structure of the direct repeats in the DNA-binding sequences of the response regulator PhoP in Streptomyces coelicolor. Nucleic Acids Res. 2008, 36 (4): 1358-1368. 10.1093/nar/gkm1150.
Article
CAS
PubMed Central
PubMed
Google Scholar
Steed PM, Wanner BL: Use of the rep technique for allele replacement to construct mutants with deletions of the pstSCAB-phoU operon: evidence of a new role for the PhoU protein in the phosphate regulon. J Bacteriol. 1993, 175 (21): 6797-6809.
CAS
PubMed Central
PubMed
Google Scholar
Wang Z, Choudhary A, Ledvina PS, Quiocho FA: Fine tuning the specificity of the periplasmic phosphate transport receptor. Site-directed mutagenesis, ligand binding, and crystallographic studies. J Biol Chem. 1994, 269 (40): 25091-25094.
CAS
PubMed
Google Scholar
Martin JF, Marcos AT, Martin A, Asturias JA, Liras P: Phosphate control of antibiotic biosynthesis at the transcriptional level. 1994, Washington, DC: American Society for Microbiology
Google Scholar
Harris AK, Williamson NR, Slater H, Cox A, Abbasi S, Foulds I, Simonsen HT, Leeper FJ, Salmond GP: The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology. 2004, 150 (Pt 11): 3547-3560. 10.1099/mic.0.27222-0.
Article
CAS
PubMed
Google Scholar
Williamson NR, Fineran PC, Ogawa W, Woodley LR, Salmond GP: Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia. Environ Microbiol. 2008, 10 (5): 1202-1217. 10.1111/j.1462-2920.2007.01536.x.
Article
CAS
PubMed
Google Scholar
Manderville RA: Synthesis, proton-affinity and anti-cancer properties of the prodigiosin-group natural products. Curr Med Chem Anti-Canc Agents. 2001, 1 (2): 195-218. 10.2174/1568011013354688.
Article
CAS
Google Scholar
Perez-Tomas R, Montaner B, Llagostera E, Soto-Cerrato V: The prodigiosins, proapoptotic drugs with anticancer properties. Biochem Pharmacol. 2003, 66 (8): 1447-1452. 10.1016/S0006-2952(03)00496-9.
Article
CAS
PubMed
Google Scholar
Williamson NR, Fineran PC, Gristwood T, Chawrai SR, Leeper FJ, Salmond GP: Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol. 2007, 2: 605-618. 10.2217/17460913.2.6.605.
Article
CAS
PubMed
Google Scholar
Bycroft BW, Maslen C, Box SJ, Brown A, Tyler JW: The biosynthetic implications of acetate and glutamate incorporation into (3R,5R)-carbapenam-3-carboxylic acid and (5R)-carbapen-2-em-3-carboxylic acid by Serratia sp. J Antibiot (Tokyo). 1988, 41 (9): 1231-1242.
Article
CAS
Google Scholar
Parker WL, Rathnum ML, Wells JS, Trejo WH, Principe PA, Sykes RB: SQ 27,860, a simple carbapenem produced by species of Serratia and Erwinia. J Antibiot (Tokyo). 1982, 35 (6): 653-660.
Article
CAS
Google Scholar
Thomson NR, Crow MA, McGowan SJ, Cox A, Salmond GP: Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol. 2000, 36 (3): 539-556. 10.1046/j.1365-2958.2000.01872.x.
Article
CAS
PubMed
Google Scholar
Williamson NR, Simonsen HT, Ahmed RA, Goldet G, Slater H, Woodley L, Leeper FJ, Salmond GP: Biosynthesis of the red antibiotic, prodigiosin, in Serratia: identification of a novel 2-methyl-3-n-amyl-pyrrole (MAP) assembly pathway, definition of the terminal condensing enzyme, and implications for undecylprodigiosin biosynthesis in Streptomyces. Mol Microbiol. 2005, 56 (4): 971-989. 10.1111/j.1365-2958.2005.04602.x.
Article
CAS
PubMed
Google Scholar
Williamson NR, Fineran PC, Leeper FJ, Salmond GP: The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol. 2006, 4 (12): 887-899. 10.1038/nrmicro1531.
Article
CAS
PubMed
Google Scholar
Fineran PC, Slater H, Everson L, Hughes K, Salmond GP: Biosynthesis of tripyrrole and beta-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol. 2005, 56 (6): 1495-1517.
Article
CAS
PubMed
Google Scholar
Slater H, Crow M, Everson L, Salmond GP: Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol. 2003, 47 (2): 303-320. 10.1046/j.1365-2958.2003.03295.x.
Article
CAS
PubMed
Google Scholar
Van Houdt R, Givskov M, Michiels CW: Quorum sensing in Serratia. FEMS Microbiol Rev. 2007, 31 (4): 407-424. 10.1111/j.1574-6976.2007.00071.x.
Article
CAS
PubMed
Google Scholar
Thomson NR, Cox A, Bycroft BW, Stewart GS, Williams P, Salmond GP: The rap and hor proteins of Erwinia, Serratia and Yersinia: a novel subgroup in a growing superfamily of proteins regulating diverse physiological processes in bacterial pathogens. Mol Microbiol. 1997, 26 (3): 531-544. 10.1046/j.1365-2958.1997.5981976.x.
Article
CAS
PubMed
Google Scholar
Cathelyn JS, Crosby SD, Lathem WW, Goldman WE, Miller VL: RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci USA. 2006, 103 (36): 13514-13519. 10.1073/pnas.0603456103.
Article
CAS
PubMed Central
PubMed
Google Scholar
Ellison DW, Lawrenz MB, Miller VL: Invasin and beyond: regulation of Yersinia virulence by RovA. Trends Microbiol. 2004, 12 (6): 296-300. 10.1016/j.tim.2004.04.006.
Article
CAS
PubMed
Google Scholar
Nagel G, Lahrz A, Dersch P: Environmental control of invasin expression in Yersinia pseudotuberculosis is mediated by regulation of RovA, a transcriptional activator of the SlyA/Hor family. Mol Microbiol. 2001, 41 (6): 1249-1269. 10.1046/j.1365-2958.2001.02522.x.
Article
CAS
PubMed
Google Scholar
Fineran PC, Williamson NR, Lilley KS, Salmond GP: Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein, PigX. J Bacteriol. 2007, 189 (21): 7653-7662. 10.1128/JB.00671-07.
Article
CAS
PubMed Central
PubMed
Google Scholar
Gristwood T, Fineran PC, Everson L, Salmond GP: PigZ, a TetR/AcrR family repressor, modulates secondary metabolism via the expression of a putative four-component resistance-nodulation-cell-division efflux pump, ZrpADBC, in Serratia sp. ATCC 39006. Mol Microbiol. 2008, 69 (2): 418-435. 10.1111/j.1365-2958.2008.06291.x.
Article
CAS
PubMed
Google Scholar
Moura RS, Martin JF, Martin A, Liras P: Substrate analysis and molecular cloning of the extracellular alkaline phosphatase of Streptomyces griseus. Microbiology. 2001, 147 (Pt 6): 1525-1533.
Article
CAS
PubMed
Google Scholar
Suziedeliene E, Suziedelis K, Garbenciute V, Normark S: The acid-inducible asr gene in Escherichia coli: transcriptional control by the phoBR operon. J Bacteriol. 1999, 181 (7): 2084-2093.
CAS
PubMed Central
PubMed
Google Scholar
Lamarche MG, Wanner BL, Crepin S, Harel J: The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis. FEMS Microbiol Rev. 2008, 32 (3): 461-473. 10.1111/j.1574-6976.2008.00101.x.
Article
CAS
PubMed
Google Scholar
Martin JF: Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. J Bacteriol. 2004, 186 (16): 5197-5201. 10.1128/JB.186.16.5197-5201.2004.
Article
CAS
PubMed Central
PubMed
Google Scholar
Sola-Landa A, Moura RS, Martin JF: The two-component PhoR-PhoP system controls both primary metabolism and secondary metabolite biosynthesis in Streptomyces lividans. Proc Natl Acad Sci USA. 2003, 100 (10): 6133-6138. 10.1073/pnas.0931429100.
Article
CAS
PubMed Central
PubMed
Google Scholar
Maplestone RA, Stone MJ, Williams DH: The evolutionary role of secondary metabolites–a review. Gene. 1992, 115 (1): 151-157. 10.1016/0378-1119(92)90553-2.
Article
CAS
PubMed
Google Scholar
Vining LC: Secondary metabolism, inventive evolution and biochemical diversity–a review. Gene. 1992, 115 (1–2): 135-140. 10.1016/0378-1119(92)90551-Y.
Article
CAS
PubMed
Google Scholar
Larsen RA, Wilson MM, Guss AM, Metcalf WW: Genetic analysis of pigment biosynthesis in Xanthobacter autotrophicus Py2 using a new, highly efficient transposon mutagenesis system that is functional in a wide variety of bacteria. Arch Microbiol. 2002, 178 (3): 193-201. 10.1007/s00203-002-0442-2.
Article
CAS
PubMed
Google Scholar
Herrero A, Flores E: Transport of basic amino acids by the dinitrogen-fixing cyanobacterium Anabaena PCC 7120. J Biol Chem. 1990, 265 (7): 3931-3935.
CAS
PubMed
Google Scholar
Bainton NJ, Stead P, Chhabra SR, Bycroft BW, Salmond GP, Stewart GS, Williams P: N-(3-oxohexanoyl)-L-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J. 1992, 288 (Pt 3): 997-1004.
Article
CAS
PubMed Central
PubMed
Google Scholar
de Lorenzo V, Herrero M, Jakubzik U, Timmis KN: Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol. 1990, 172 (11): 6568-6572.
CAS
PubMed Central
PubMed
Google Scholar
Fineran PC, Everson L, Slater H, Salmond GP: A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia. Microbiology. 2005, 151 (Pt 12): 3833-3845. 10.1099/mic.0.28251-0.
Article
CAS
PubMed
Google Scholar
Lodge J, Fear J, Busby S, Gunasekaran P, Kamini NR: Broad host range plasmids carrying the Escherichia coli lactose and galactose operons. FEMS Microbiol Lett. 1992, 74 (2–3): 271-276. 10.1111/j.1574-6968.1992.tb05378.x.
Article
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: a Laboratory Manual. 1989, New York, NY: Cold Spring Harbour Laboratory Press, 2
Google Scholar
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25 (17): 3389-3402. 10.1093/nar/25.17.3389.
Article
CAS
PubMed Central
PubMed
Google Scholar
Brickman E, Beckwith J: Analysis of the regulation of Escherichia coli alkaline phosphatase synthesis using deletions and phi80 transducing phages. J Mol Biol. 1975, 96 (2): 307-316. 10.1016/0022-2836(75)90350-2.
Article
CAS
PubMed
Google Scholar