Stetter KO: Hyperthermophilic prokaryotes. FEMS Microbiol Rev. 1996, 18: 149-158. 10.1111/j.1574-6976.1996.tb00233.x.
Article
CAS
Google Scholar
Woese CR, Kandler O, Wheelis ML: Towards a natural system of organisms: proposal for the domains of Archaea, Bacteria and Eucarya. Proc Natl Acad Sci USA. 1990, 87: 4576-4579. 10.1073/pnas.87.12.4576.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ma K, Schicho RN, Kelly RM, Adams MWW: Hydrogenase of the hyperthermophile Pyrococcus furiosus is an elemental sulfur reductase or sulfhydrogenase: evidence for a sulfur-reducing hydrogenase ancestor. Proc Natl Acad Sci USA. 1993, 90: 5341-5344. 10.1073/pnas.90.11.5341.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vignais PM, Colbeau A: Molecular biology of microbiol hydrogenases. Curr Issues Mol Biol. 2004, 6: 159-88.
CAS
PubMed
Google Scholar
Rákhely G, Kovács ÁT, Maróti G, Fodor BD, Csanádi Gy, Latinovics D, Kovács KL: Cyanobacterial-type, heteropentameric, NAD+-reducing NiFe hydrogenase in the purple sulfur photosynthetic bacterium Thiocapsa roseopersicina. Appl Environ Microbiol. 2004, 70: 722-728. 10.1128/AEM.70.2.722-728.2004.
Article
PubMed Central
PubMed
Google Scholar
Hedderich R: Energy-converting [NiFe] hydrogenases from archaea and extremophiles: ancestors of complex I. J Bioenerg Biomemb. 2004, 36: 65-75. 10.1023/B:JOBB.0000019599.43969.33.
Article
CAS
Google Scholar
Böhm R, Sauter M, Böck A: Nucleotide sequence and expression of an operon in Escherichia coli coding for formate hydrogenlyase components. Mol Microbiol. 1990, 4: 231-243. 10.1111/j.1365-2958.1990.tb00590.x.
Article
PubMed
Google Scholar
Sauter M, Böhm R, Böck A: Mutational analysis of the operon (hyc) determining hydrogenase 3 formation in Escherichia coli. Mol Microbiol. 1992, 6: 1523-1532. 10.1111/j.1365-2958.1992.tb00873.x.
Article
CAS
PubMed
Google Scholar
Neuner A, Jannasch HW, Belkin S, Stetter KO: Thermococcus litoralis sp. nov.: A new species of extremely thermophilic marine archaebacteria. Arch Microbiol. 1990, 153: 205-207. 10.1007/BF00247822.
Article
Google Scholar
Huber R, Stetter KO: Discovery of hyperthermophilic microorganisms. Methods Enzymol. 2001, 330: 11-24.
Article
CAS
PubMed
Google Scholar
Kengen SWM, Stams AJM, de Vos WM: Sugar metabolism of hyperthermophiles. FEMS Microbiol Rev. 1996, 18: 119-137. 10.1111/j.1574-6976.1996.tb00231.x.
Article
CAS
Google Scholar
Mai X, Adams MWW: Characterization of a forth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J Bacteriol. 1996, 178: 5890-5896.
PubMed Central
CAS
PubMed
Google Scholar
Mai X, Adams MWW: Purification and characterization of two reversible and ADP-dependent acetyl coenzyme A synthetases from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 1996, 178: 5897-5903.
PubMed Central
CAS
PubMed
Google Scholar
Mukund S, Adams MWW: The novel tungsten-iron-sulfur protein of the hyperthermophilic archaebacterium Pyrococcus furiosus, is an aldehyde ferredoxin oxidoreductase. J Biol Chem. 1991, 266: 14208-14216.
CAS
PubMed
Google Scholar
Mukund S, Adams MWW: Characterization of a novel tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon, Thermococcus litoralis. J Biol Chem. 1993, 268: 13592-13600.
CAS
PubMed
Google Scholar
Roy R, Mukund S, Schut GJ, Dunn DM, Weiss R, Adams MWW: Purification and molecular characterization of the tungsten-containing formaldehyde ferredoxin oxidoreductase from the hyperthermophilic archaeon Pyrococcus furiosus: the third of a putative five-member tungstoenzyme family. J Bacteriol. 1999, 181: 1171-1180.
PubMed Central
CAS
PubMed
Google Scholar
Bryant FO, Adams MWW: Characterization of hydrogenases from the hyperthermophilic Archaebacterium, Pyrococcus furiosus. J Biol Chem. 1989, 264: 5070-5079.
CAS
PubMed
Google Scholar
Ma K, Weiss R, Adams MWW: Characterization of hydrogenase II from the hyperthermophilic archaeon Pyrococcus furiosus and assessment of its role in sulfur reduction. J Bacteriol. 2000, 182: 1864-1871. 10.1128/JB.182.7.1864-1871.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sapra R, Verhagen MF, Adams MWW: Purification and characterization of a membrane-bound hydrogenase from the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 2000, 182: 3423-3428. 10.1128/JB.182.12.3423-3428.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sapra R, Bagramyan K, Adams MWW: A simple energy-conserving system: proton reduction coupled to proton translocation. Proc Natl Acad Sci USA. 2003, 100: 7545-7550. 10.1073/pnas.1331436100.
Article
PubMed Central
CAS
PubMed
Google Scholar
Silva PJ, Ban van den ECD, Wassink H, Haaker H, de Castro B, Robb FT, Hagen WR: Enzymes of hydrogen metabolism in Pyrococcus furiosus. Eur J Biochem. 2000, 267: 6541-6551. 10.1046/j.1432-1327.2000.01745.x.
Article
CAS
PubMed
Google Scholar
Rákhely G, Zhou ZH, Adams MWW, Kovács KL: Biochemical and molecular characterization of the [NiFe] hydrogenase from the hyperthermophilic archaeon, Thermococcus litoralis. Eur J Biochem. 1999, 266: 1158-1165. 10.1046/j.1432-1327.1999.00969.x.
Article
PubMed
Google Scholar
Bálint B, Bagi Z, Tóth A, Rákhely G, Perei K, Kovács K: Utilization of keratin-containing biowaste to produce biohydrogen. Appl Microbiol Biotechnol. 2005, 69: 404-410. 10.1007/s00253-005-1993-3.
Article
PubMed
Google Scholar
Kletzin A, Adams MWW: Tungsten in biological systems. FEMS Microbiol Rev. 1996, 18: 5-63. 10.1111/j.1574-6976.1996.tb00226.x.
Article
CAS
PubMed
Google Scholar
Ensign SA, Ludden PW: Characterization of the CO oxidation/H2 evolution system of Rhodospirillum rubrum: role of a 22-kDa iron-sulfur protein in mediating electron transfer between carbon monoxide dehydrogenase and hydrogenase. J Biol Chem. 1991, 266: 18395-18403.
CAS
PubMed
Google Scholar
Albracht SPJ: Nickel hydrogenases: in search of the active site. Biochim Biophys Acta. 1994, 1188: 167-204. 10.1016/0005-2728(94)90036-1.
Article
PubMed
Google Scholar
Andrews SC, Berks BC, Mcclay J, Ambler A, Quail MA, Golby P, Guest JR: A 12- cistron Escherichia coli operon (hyf) encoding a putative proton- translocating formate hydrogenlyase system. Microbiology. 1997, 143: 3633-3647.
Article
CAS
PubMed
Google Scholar
Künkel A, Vorholt JA, Thauer RK, Hedderich R: An Escherichia coli hydrogenase-3-type hydrogenase in methanogenic archaea. Eur J Biochem. 1998, 252: 467-476. 10.1046/j.1432-1327.1998.2520467.x.
Article
PubMed
Google Scholar
Lee PA, Tullman-Ercek D, Georgiou G: The bacterial twin-arginine translocation pathway. Annu Rev Microbiol. 2006, 60: 373-395. 10.1146/annurev.micro.60.080805.142212.
Article
PubMed Central
PubMed
Google Scholar
Soppa J: Transcription initiation in Archaea: facts, factors and future aspects. Mol Microbiol. 1999, 31: 1295-1305. 10.1046/j.1365-2958.1999.01273.x.
Article
CAS
PubMed
Google Scholar
Brown JW, Daniels CJ, Reeve JN: Gene structure, organization, and expression in archaebacteria. Crit Rev Microbiol. 1989, 16: 287-337. 10.3109/10408418909105479.
Article
CAS
PubMed
Google Scholar
Ma K, Robb FT, Adams MWW: Purification and characterization of NADP-specific alcohol dehydrogenase and glutamate dehydrogenase from the hyperthermophilic archaeon Thermococcus litoralis. Appl Env Microbiol. 1994, 60: 562-568.
CAS
Google Scholar
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K: Current Protocols in Molecular Biology. 1996, New York: Wiley
Google Scholar
Schagger H, Cramer WA, Jagow G: Analysis of molecular masses and oligomeric states of protein complexes by blue native electrophoresis and isolation of membrane protein complexes by two-dimensional native electrophoresis. Anal Biochem. 1994, 217: 220-230. 10.1006/abio.1994.1112.
Article
CAS
PubMed
Google Scholar
Maeder DL, Weiss RB, Dunn DM, Cherry JL, Gonzalez JM, DiRuggiero J, Robb FT: Divergence of the hyperthermophilic archaea Pyrococcus furiosus and P. horikoshii inferred from complete genomic sequences. Genetics. 1999, 152: 1299-305.
PubMed Central
CAS
PubMed
Google Scholar
Cohen GN, Barbe V, Flament D, Galperin M, Heilig R, Lecompte O, Poch O, Prieur D, Querellou J, Ripp R, Thierry J-C, Oost Van der J, Weissenbach J, Zivanovic Y, Forterre P: An integrated analysis of the genome of the hyperthermophilic archaeon Pyrococcus abyssi. Mol Microbiol. 2003, 47: 1495-1512. 10.1046/j.1365-2958.2003.03381.x.
Article
CAS
PubMed
Google Scholar
Kawarabayasi Y, Sawada M, Horikawa H, Haikawa Y, Hino Y, Yamamoto S, Sekine M, Baba S, Kosugi H, Hosoyama A, Nagai Y, Sakai M, Ogura K, Otuka R, Nakazawa H, Takamiya M, Ohfuku Y, Funahashi T, Tanaka T, Kudoh Y, Yamazaki J, Kushida N, Oguchi A, Aoki K, Nakamura Y, Robb TF, Horikoshi K, Masuchi Y, Shizuya H, Kikuchi H: Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 1998, 5: 55-76. 10.1093/dnares/5.2.55.
Article
CAS
PubMed
Google Scholar
Fukui T, Atomi H, Kanai T, Matsumi R, Fujiwara S, Imanaka T: Complete genome sequence of the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1 and comparison with Pyrococcus genomes. Genome Res. 2005, 15: 352-363. 10.1101/gr.3003105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Böck A, Sawers G: Fermentation. Escherichia coli and Salmonella typhimurium: cellular and molecular biology. Edited by: Neidhart FC. 1996, Washington, D.C.: American Society for Microbiology, 1: 262-282. 2
Google Scholar
Bodrossy L, Kovács KL: Methane utilizing bacteria and their biotechnological applications. Indian J Exp Biol. 1994, 32: 443-449.
CAS
PubMed
Google Scholar
Dimroth P, Schink B: Energy conversion in the decarboxylation of dicarboxylic acids by fermenting bacteria. Arch Microbiol. 1998, 170: 69-77. 10.1007/s002030050616.
Article
CAS
PubMed
Google Scholar
Kornberg HL: The role and control of the glyoxylate cycle in Escherichia coli. Biochem J. 1966, 99: 1-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hesslinger C, Fairhurst SA, Sawers G: Novel keto acid formate-lyase and propionate kinase enzymes are components of an anaerobic pathway in Escherichia coli that degrades L-threonine to propionate. Mol Microbiol. 1998, 27: 477-492. 10.1046/j.1365-2958.1998.00696.x.
Article
CAS
PubMed
Google Scholar
Knappe J, Sawers G: A radical-chemical route to acetyl-CoA: the anaerobically induced pyruvate formate-lyase system of Escherichia coli. FEMS Microbiol Rev. 1990, 4: 383-398. 10.1016/S0168-6445(05)80006-3.
Google Scholar
Blamey JM, Adams MWW: Purification and characterization of pyruvate ferredoxin oxidoreductase from the hyperthermophilic archaeon, Pyrococcus furiosus. Biochim Biophys Acta. 1993, 1161: 19-27.
Article
CAS
PubMed
Google Scholar
Ma K, Zhou ZH, Adams MWW: Hydrogen production from pyruvate by enzymes purified from the hyperthermophilic archaeon, Pyrococcus furiosus: A key role for NADPH. FEMS Microbiol Lett. 1994, 122: 245-250. 10.1111/j.1574-6968.1994.tb07175.x.
Article
CAS
Google Scholar
Rinker KD, Kelly RM: Growth physiology of the hyperthermophilic Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl Env Microbiol. 1996, 62: 4478-4485.
CAS
Google Scholar
Adams MWW, Holden JF, Menon AL, Schut GJ, Grunden AM, Hou C, Hutchins AM, Jenney FE, Kim C, Ma K, Pan G, Roy R, Sapra R, Story SV, Verhagen MFJM: Key rule for sulfur in peptide metabolism and in regulation of three hydrogenases in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol. 2001, 183: 716-724. 10.1128/JB.183.2.716-724.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular cloning: a Laboratory Manual. 1989, Cold Spring Harbor, NY.: Cold Spring Harbor Laboratory Press, 2
Google Scholar
The NCBI HomePage. [http://www.ncbi.nlm.nih.gov]
The BCM Search Launcher: Multiple Sequence Alignments. [http://searchlauncher.bcm.tmc.edu/multi-align/multi-align.html]
HMMTOP. [http://www.enzim.hu/hmmtop/index.html]
Tusnády GE, Simon I: The HMMTOP transmembrane topology prediction server. Bioinformatics. 2001, 17: 849-850. 10.1093/bioinformatics/17.9.849.
Article
PubMed
Google Scholar