Stolp H, Starr MP: Bdellovibrio bacteriovorus Gen. Et Sp. N., a Predatory, Ectoparasitic, and Bacteriolytic Microorganism. Antonie van Leeuwenhoek. 1963, 29: 217-248. 10.1007/BF02046064.
Article
CAS
PubMed
Google Scholar
Kelley JI, Williams HN: Bdellovibrios in Callinectus sapidus, the blue crab. Appl Environ Microbiol. 1992, 58: 1408-1410.
PubMed Central
CAS
PubMed
Google Scholar
Schoeffield AJ, Williams HN: Efficiencies of recovery of bdellovibrios from brackish-water environments by using various bacterial species as prey. Appl Environ Microbiol. 1990, 56: 230-236.
PubMed Central
CAS
PubMed
Google Scholar
Kelley JI, Turng BF, Williams HN, L. BM: Effects of temperature, salinity, and substrate on the colonization of surfaces in situ by aquatic bdellovibrios. Appl Environ Microbiol. 1997, 63: 84-90.
PubMed Central
CAS
PubMed
Google Scholar
Chauhan A, Williams HN: Response of Bdellovibrio and like organisms (BALOs) to the migration of naturally occurring bacteria to chemoattractants. Curr microbiol. 2006, 53: 516-522. 10.1007/s00284-006-0292-2.
Article
CAS
PubMed
Google Scholar
Williams HN, Schoeffied HN, Guether D, Kelley J, Shah D, A FW: Recovery of bdellovibrios from submerged surfaces and other aquatic habitats. Microb Ecol. 1995, 29: 39-48. 10.1007/BF00217421.
Article
CAS
PubMed
Google Scholar
Keya SO, Alexander M: Regulation of parasitism by host density: the Bdellovibrio-Rhizobium interrelationship. Soil Biol Biochem. 1975, 7: 231-237. 10.1016/0038-0717(75)90044-9.
Article
Google Scholar
Evans KJ, Lambert C, Sockett RE: Predation by Bdellovibrio bacteriovorus HD100 requires type IV pili. J Bacteriol. 2007, 189: 4850-4859. 10.1128/JB.01942-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lambert C, Evans KJ, Till R, Hobley L, Capeness M, Rendulic S, Schuster SC, Aizawa S, Sockett RE: Characterizing the flagellar filament and the role of motility in bacterial prey-penetration by Bdellovibrio bacteriovorus. Mol Microbiol. 2006, 60: 274-286. 10.1111/j.1365-2958.2006.05081.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Lambert C, Smith MC, Sockett RE: A novel assay to monitor predator-prey interactions for Bdellovibrio bacteriovorus 109 J reveals a role for methyl-accepting chemotaxis proteins in predation. Environ Microbiol. 2003, 5: 127-132. 10.1046/j.1462-2920.2003.00385.x.
Article
CAS
PubMed
Google Scholar
Flannagan RS, Valvano MA, Koval SF: Downregulation of the motA gene delays the escape of the obligate predator Bdellovibrio bacteriovorus 109J from bdelloplasts of bacterial prey cells. Microbiology. 2004, 150: 649-656. 10.1099/mic.0.26761-0.
Article
CAS
PubMed
Google Scholar
Diedrich DL, Denny CF, Hashimoto T, Conti SF: Facultatively parasitic strain of Bdellovibrio bacteriovorus. J Bacteriol. 1970, 101: 989-996.
PubMed Central
CAS
PubMed
Google Scholar
Ishiguro EE: A growth initiation factor for host-independent derivatives of Bdellovibrio bacteriovorus. J Bacteriol. 1973, 115: 243-252.
PubMed Central
CAS
PubMed
Google Scholar
Ishiguro EE: Minimum nutritional requirements for growth of host-independent derivatives of Bdellovibrio bacteriovorus strain 109 Davis. Can J Microbiol. 1974, 20: 263-264.
Article
CAS
PubMed
Google Scholar
Varon M, Seijffers J: Symbiosis-independent and symbiosis-incompetent mutants of Bdellovibrio bacteriovorus 109J. J Bacteriol. 1975, 124: 1191-1197.
PubMed Central
CAS
PubMed
Google Scholar
Barel G, Jurkevitch E: Analysis of phenotypic diversity among host-independent mutants of Bdellovibrio bacteriovorus 109J. Arch Microbiol. 2001, 176: 211-216. 10.1007/s002030100312.
Article
CAS
PubMed
Google Scholar
Kadouri D, O'Toole GA: Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol. 2005, 71: 4044-4051. 10.1128/AEM.71.7.4044-4051.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Seidler RJ, Starr MP: Isolation and characterization of host-independent Bdellovibrios. J Bacteriol. 1969, 100: 769-785.
PubMed Central
CAS
PubMed
Google Scholar
Davidov Y, Friedjung A, Jurkevitch E: Structure analysis of a soil community of predatory bacteria using culture-dependent and culture-independent methods reveals a hitherto undetected diversity of Bdellovibrio-and-like organisms. Environ Microbiol. 2006, 8: 1667-1673. 10.1111/j.1462-2920.2006.01052.x.
Article
CAS
PubMed
Google Scholar
Nambu T, Minamino T, Macnab RM, Kutsukake K: Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. J Bacteriol. 1999, 181: 1555-1561.
PubMed Central
CAS
PubMed
Google Scholar
Lee HJ, Hughes KT: Posttranscriptional control of the Salmonella enterica flagellar hook protein FlgE. J Bacteriol. 2006, 188: 3308-3316. 10.1128/JB.188.9.3308-3316.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rendulic S, Jagtap P, Rosinus A, Eppinger M, Baar C, Lanz C, Keller H, Lambert C, Evans KJ, Goesmann A: A predator unmasked: life cycle of Bdellovibrio bacteriovorus from a genomic perspective. Science. 2004, 303: 689-692. 10.1126/science.1093027.
Article
CAS
PubMed
Google Scholar
Cotter TW, Thomashow MF: A conjugation procedure for Bdellovibrio bacteriovorus and its use to identify DNA sequences that enhance the plaque-forming ability of a spontaneous host-independent mutant. J Bacteriol. 1992, 174: 6011-6017.
PubMed Central
CAS
PubMed
Google Scholar
Steyert SR, Pineiro SA: Development of a novel genetic system to create markerless deletion mutants of Bdellovibrio bacteriovorus. Appl Environ Microbiol. 2007, 73: 4717-4724. 10.1128/AEM.00640-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shilo M, Bruff B: Lysis of Gram-negative bacteria by host-independent ectoparasitic Bdellovibrio bacteriovorus isolates. J Gen Microbiol. 1965, 40: 317-328.
Article
CAS
PubMed
Google Scholar
Thomashow MF, Cotter TW: Bdellovibrio host dependence: the search for signal molecules and genes that regulate the intraperiplasmic growth cycle. J Bacteriol. 1992, 174: 5767-5771.
PubMed Central
CAS
PubMed
Google Scholar
Cotter TW, Thomashow MF: Identification of a Bdellovibrio bacteriovorus genetic locus, hit, associated with the host-independent phenotype. J Bacteriol. 1992, 174: 6018-6024.
PubMed Central
CAS
PubMed
Google Scholar
Akerley BJ, Rubin EJ, Camilli A, Lampe DJ, Robertson HM, Mekalanos JJ: Systematic identification of essential genes by in vitro mariner mutagenesis. Proc Natl Acad of Sci USA. 1998, 95: 8927-8932. 10.1073/pnas.95.15.8927.
Article
CAS
Google Scholar
Youderian P, Burke N, White DJ, Hartzell PL: Identification of genes required for adventurous gliding motility in Myxococcus xanthus with the transposable element mariner. Mol Microbiol. 2003, 49: 555-570. 10.1046/j.1365-2958.2003.03582.x.
Article
CAS
PubMed
Google Scholar
Golden NJ, Camilli A, Acheson DW: Random transposon mutagenesis of Campylobacter jejuni. Infect Immun. 2000, 68: 5450-5453. 10.1128/IAI.68.9.5450-5453.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ: In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc NatL Acad Sci USA. 1999, 96: 1645-1650. 10.1073/pnas.96.4.1645.
Article
PubMed Central
CAS
PubMed
Google Scholar
Samatey FA, Matsunami H, Imada K, Nagashima S, Shaikh TR, Thomas DR, Chen JZ, Derosier DJ, Kitao A, Namba K: Structure of the bacterial flagellar hook and implication for the molecular universal joint mechanism. Nature. 2004, 431: 1062-1068. 10.1038/nature02997.
Article
CAS
PubMed
Google Scholar
Dewanti R, Wong ACL: Influence of culture conditions on biofilm formation by Escherichia coli 0157:H7. Inter J Food Microbiol. 1995, 26: 147-164. 10.1016/0168-1605(94)00103-D.
Article
CAS
Google Scholar
Palmer RJ, White DC: Developmental biology of biofilms:implications for treatment and control. Trends in Microbiol. 1997, 5: 435-440. 10.1016/S0966-842X(97)01142-6.
Article
Google Scholar
Watnick P, Kolter R: Biofilm, city of microbes. J Bacteriol. 2000, 182: 2675-2679. 10.1128/JB.182.10.2675-2679.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Doolittle MM, Cooney JJ, Caldwell DE: Tracing the interaction of bacteriophage with bacterial biofilms using fluorescent and chromogenic probes. J Ind Microbiol. 1996, 16: 331-341. 10.1007/BF01570111.
Article
CAS
PubMed
Google Scholar
Lawrence JR, Scharf B, Packroff G, Neu TR: Microscale evaluation of the effects of grazing by invertebrates with contrasting feeding modes on river biofilm architecture and composition. Microb Ecol. 2002, 44: 199-207. 10.1007/s00248-001-1064-y.
Article
CAS
PubMed
Google Scholar
Matz C, Bergfeld T, Rice SA, Kjelleberg S: Microcolonies, quorum sensing and cytotoxicity determine the survival of Pseudomonas aeruginosa biofilms exposed to protozoan grazing. Environ Microbiol. 2004, 6: 218-226. 10.1111/j.1462-2920.2004.00556.x.
Article
PubMed
Google Scholar
Mattick JS: Type IV pili and twitching motility. Annu Rev Microbiol. 2002, 56: 289-314. 10.1146/annurev.micro.56.012302.160938.
Article
CAS
PubMed
Google Scholar
Burrows LL: Weapons of mass retraction. Mol Microbiol. 2005, 57: 878-888. 10.1111/j.1365-2958.2005.04703.x.
Article
CAS
PubMed
Google Scholar
Spormann AM: Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol Mol Biol Rev. 1999, 63: 621-641.
PubMed Central
CAS
PubMed
Google Scholar
Kappe S, Bruderer T, Gantt S, Fujioka H, Nussenzweig V, Menard R: Conservation of a gliding motility and cell invasion machinery in Apicomplexan parasites. J Cell Biol. 1999, 147: 937-944. 10.1083/jcb.147.5.937.
Article
PubMed Central
CAS
PubMed
Google Scholar
LaMarre AG, Straley SC, Conti SF: Chemotaxis toward amino acids by Bdellovibrio bacteriovorus. J Bacteriol. 1977, 131: 201-207.
PubMed Central
CAS
PubMed
Google Scholar
Straley SC, LaMarre AG, Lawrence LJ, Conti SF: Chemotaxis of Bdellovibrio bacteriovorus toward pure compounds. Journal of bacteriology. 1979, 140: 634-642.
PubMed Central
CAS
PubMed
Google Scholar
Pratt LA, Kolter R: Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol. 1998, 30: 285-294. 10.1046/j.1365-2958.1998.01061.x.
Article
CAS
PubMed
Google Scholar
Starr MP: Bdellovibrio as symbiont; the associations of Bdellovibrios with other bacteria interpreted in terms of a generalized scheme for classifying organismic associations. Symp Soc Exp Biol. 1975, 93-124.
Google Scholar
Kadouri D, Venzon NC, O'Toole GA: Vulnerability of pathogenic biofilms to Micavibrio aeruginosavorus. Appl Environ Microbiol. 2007, 73: 605-614. 10.1128/AEM.01893-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Merritt JH, Kadouri DE, O'Toole GA: Growing and Analyzing Static Biofilms. Current Protocols in Microbiology. 2005, Hoboken, NJ: John Wiley & Sons, 1:
Google Scholar
Simons M, van der Bij A, Brand I, de Weger L, Wijffelman CA, Lugtenberg BJ: Gnotobiotic System for Studying Rhizosphere Colonization by Plant Growth-Promoting Pseudomonas Bacteria. MPMI. 1996, 9: 600-607.
Article
CAS
PubMed
Google Scholar
O'Toole GA, Kolter R: Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol. 1998, 28: 449-461. 10.1046/j.1365-2958.1998.00797.x.
Article
PubMed
Google Scholar
Caetano-Annoles G: Amplifying DNA with arbitrary oligonucleotide primers. PCR Methods Appl. 1993, 3: 85-92.
Article
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
CAS
PubMed
Google Scholar