Galyov EE, Brett PJ, DeShazer D: Molecular insights into Burkholderia pseudomallei and Burkholderia mallei pathogenesis. Annu Rev Microbiol. 2010, 64: 495-517. 10.1146/annurev.micro.112408.134030.
Article
CAS
PubMed
Google Scholar
Sprague LD, Neubauer H: Melioidosis in animals: a review on epizootiology, diagnosis and clinical presentation. J Vet Med B Infect Dis Vet Public Health. 2004, 51: 305-320. 10.1111/j.1439-0450.2004.00797.x.
Article
CAS
PubMed
Google Scholar
Cheng AC, Currie BJ: Melioidosis: epidemiology, pathophysiology, and management. Clin Microbiol Rev. 2005, 18: 383-416. 10.1128/CMR.18.2.383-416.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
White NJ: Melioidosis. Lancet. 2003, 361: 1715-1722. 10.1016/S0140-6736(03)13374-0.
Article
CAS
PubMed
Google Scholar
Ngauy V, Lemeshev Y, Sadkowski L, Crawford G: Cutaneous melioidosis in a man who was taken as a prisoner of war by the Japanese during World War II. J Clin Microbiol. 2005, 43: 970-972. 10.1128/JCM.43.2.970-972.2005.
Article
PubMed Central
PubMed
Google Scholar
Regulations USCOF: Public Health Security and Bioterrorism Preparedness and Response Act, 107th Congress. Book Public Health Security and Bioterrorism Preparedness and Response Act, 107th Congress. vol. 42. pp. 107–118. 2002, City: Public Law, 107-118. 42
Google Scholar
Hoebe K, Janssen E, Beutler B: The interface between innate and adaptive immunity. Nat Immunol. 2004, 5: 971-974.
Article
CAS
PubMed
Google Scholar
Mackaness GB: The Immunological Basis of Acquired Cellular Resistance. J Exp Med. 1964, 120: 105-120. 10.1084/jem.120.1.105.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chawla A, Nguyen KD, Goh YP: Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 2011, 11: 738-749. 10.1038/nri3071.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ganz T: Iron in innate immunity: starve the invaders. Curr Opin Immunol. 2009, 21: 63-67. 10.1016/j.coi.2009.01.011.
Article
PubMed Central
CAS
PubMed
Google Scholar
Murray PJ, Wynn TA: Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011, 11: 723-737. 10.1038/nri3073.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vignery A: Macrophage fusion: the making of osteoclasts and giant cells. J Exp Med. 2005, 202: 337-340. 10.1084/jem.20051123.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bouley DM, Ghori N, Mercer KL, Falkow S, Ramakrishnan L: Dynamic nature of host-pathogen interactions in Mycobacterium marinum granulomas. Infect Immun. 2001, 69: 7820-7831. 10.1128/IAI.69.12.7820-7831.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Saunders BM, Frank AA, Orme IM, Cooper AM: CD4 is required for the development of a protective granulomatous response to pulmonary tuberculosis. Cell Immunol. 2002, 216: 65-72. 10.1016/S0008-8749(02)00510-5.
Article
CAS
PubMed
Google Scholar
Via LE, Lin PL, Ray SM, Carrillo J, Allen SS, Eum SY, Taylor K, Klein E, Manjunatha U, Gonzales J, Lee EG, Park SK, Raleigh JA, Cho SN, McMurray DN, Flynn JL, Barry CE: Tuberculous granulomas are hypoxic in guinea pigs, rabbits, and nonhuman primates. Infect Immun. 2008, 76: 2333-2340. 10.1128/IAI.01515-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Im JG, Itoh H, Shim YS, Lee JH, Ahn J, Han MC, Noma S: Pulmonary tuberculosis: CT findings–early active disease and sequential change with antituberculous therapy. Radiology. 1993, 186: 653-660.
Article
CAS
PubMed
Google Scholar
Poey C, Verhaegen F, Giron J, Lavayssiere J, Fajadet P, Duparc B: High resolution chest CT in tuberculosis: evolutive patterns and signs of activity. J Comput Assist Tomogr. 1997, 21: 601-607. 10.1097/00004728-199707000-00014.
Article
CAS
PubMed
Google Scholar
Kaplan G, Post FA, Moreira AL, Wainwright H, Kreiswirth BN, Tanverdi M, Mathema B, Ramaswamy SV, Walther G, Steyn LM, Barry CE, Bekker LG: Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect Immun. 2003, 71: 7099-7108. 10.1128/IAI.71.12.7099-7108.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ulrichs T, Kosmiadi GA, Trusov V, Jorg S, Pradl L, Titukhina M, Mishenko V, Gushina N, Kaufmann SH: Human tuberculous granulomas induce peripheral lymphoid follicle-like structures to orchestrate local host defence in the lung. J Pathol. 2004, 204: 217-228. 10.1002/path.1628.
Article
PubMed
Google Scholar
Puissegur MP, Botanch C, Duteyrat JL, Delsol G, Caratero C, Altare F: An in vitro dual model of mycobacterial granulomas to investigate the molecular interactions between mycobacteria and human host cells. Cell Microbiol. 2004, 6: 423-433. 10.1111/j.1462-5822.2004.00371.x.
Article
CAS
PubMed
Google Scholar
Chambers TJ: Fusion of hamster macrophages induced by lectins. J Pathol. 1977, 123: 53-61. 10.1002/path.1711230107.
Article
CAS
PubMed
Google Scholar
DeFife KM, Jenney CR, McNally AK, Colton E, Anderson JM: Interleukin-13 induces human monocyte/macrophage fusion and macrophage mannose receptor expression. J Immunol. 1997, 158: 3385-3390.
CAS
PubMed
Google Scholar
Enelow RI, Sullivan GW, Carper HT, Mandell GL: Induction of multinucleated giant cell formation from in vitro culture of human monocytes with interleukin-3 and interferon-gamma: comparison with other stimulating factors. Am J Respir Cell Mol Biol. 1992, 6: 57-62. 10.1165/ajrcmb/6.1.57.
Article
CAS
PubMed
Google Scholar
Kreipe H, Radzun HJ, Rudolph P, Barth J, Hansmann ML, Heidorn K, Parwaresch MR: Multinucleated giant cells generated in vitro. Terminally differentiated macrophages with down-regulated c-fms expression. Am J Pathol. 1988, 130: 232-243.
PubMed Central
CAS
PubMed
Google Scholar
Lazarus D, Yamin M, McCarthy K, Schneeberger EE, Kradin R: Anti-RMA, a murine monoclonal antibody, activates rat macrophages: II. Induction of DNA synthesis and formation of multinucleated giant cells. Am J Respir Cell Mol Biol. 1990, 3: 103-111. 10.1165/ajrcmb/3.2.103.
Article
CAS
PubMed
Google Scholar
McInnes A, Rennick DM: Interleukin 4 induces cultured monocytes/macrophages to form giant multinucleated cells. J Exp Med. 1988, 167: 598-611. 10.1084/jem.167.2.598.
Article
CAS
PubMed
Google Scholar
Orentas RJ, Reinlib L, Hildreth JE: Anti-class II MHC antibody induces multinucleated giant cell formation from peripheral blood monocytes. J Leukoc Biol. 1992, 51: 199-209.
CAS
PubMed
Google Scholar
Postlethwaite AE, Jackson BK, Beachey EH, Kang AH: Formation of multinucleated giant cells from human monocyte precursors. Mediation by a soluble protein from antigen-and mitogen-stimulated lymphocytes. J Exp Med. 1982, 155: 168-178. 10.1084/jem.155.1.168.
Article
CAS
PubMed
Google Scholar
Sone S, Bucana C, Hoyer LC, Fidler IJ: Kinetics and ultrastructural studies of the induction of rat alveolar macrophage fusion by mediators released from mitogen-stimulated lymphocytes. Am J Pathol. 1981, 103: 234-246.
PubMed Central
CAS
PubMed
Google Scholar
Tabata N, Ito M, Shimokata K, Suga S, Ohgimoto S, Tsurudome M, Kawano M, Matsumura H, Komada H, Nishio M, Ito Y: Expression of fusion regulatory proteins (FRPs) on human peripheral blood monocytes. Induction of homotypic cell aggregation and formation of multinucleated giant cells by anti-FRP-1 monoclonal antibodies. J Immunol. 1994, 153: 3256-3266.
CAS
PubMed
Google Scholar
Takashima T, Ohnishi K, Tsuyuguchi I, Kishimoto S: Differential regulation of formation of multinucleated giant cells from concanavalin A-stimulated human blood monocytes by IFN-gamma and IL-4. J Immunol. 1993, 150: 3002-3010.
CAS
PubMed
Google Scholar
Weinberg JB, Hobbs MM, Misukonis MA: Recombinant human gamma-interferon induces human monocyte polykaryon formation. Proc Natl Acad Sci U S A. 1984, 81: 4554-4557. 10.1073/pnas.81.14.4554.
Article
PubMed Central
CAS
PubMed
Google Scholar
Chambers TJ: Multinucleate giant cells. J Pathol. 1978, 126: 125-148. 10.1002/path.1711260302.
Article
CAS
PubMed
Google Scholar
Most J, Neumayer HP, Dierich MP: Cytokine-induced generation of multinucleated giant cells in vitro requires interferon-gamma and expression of LFA-1. Eur J Immunol. 1990, 20: 1661-1667. 10.1002/eji.1830200807.
Article
CAS
PubMed
Google Scholar
Kyriakides TR, Foster MJ, Keeney GE, Tsai A, Giachelli CM, Clark-Lewis I, Rollins BJ, Bornstein P: The CC chemokine ligand, CCL2/MCP1, participates in macrophage fusion and foreign body giant cell formation. Am J Pathol. 2004, 165: 2157-2166. 10.1016/S0002-9440(10)63265-8.
Article
PubMed Central
CAS
PubMed
Google Scholar
Yagi M, Miyamoto T, Sawatani Y, Iwamoto K, Hosogane N, Fujita N, Morita K, Ninomiya K, Suzuki T, Miyamoto K, Oike Y, Takeya M, Toyama Y, Suda T: DC-STAMP is essential for cell-cell fusion in osteoclasts and foreign body giant cells. J Exp Med. 2005, 202: 345-351. 10.1084/jem.20050645.
Article
PubMed Central
CAS
PubMed
Google Scholar
Helming L, Gordon S: Molecular mediators of macrophage fusion. Trends Cell Biol. 2009, 19: 514-522. 10.1016/j.tcb.2009.07.005.
Article
CAS
PubMed
Google Scholar
Jay SM, Skokos E, Laiwalla F, Krady MM, Kyriakides TR: Foreign body giant cell formation is preceded by lamellipodia formation and can be attenuated by inhibition of Rac1 activation. Am J Pathol. 2007, 171: 632-640. 10.2353/ajpath.2007.061213.
Article
PubMed Central
CAS
PubMed
Google Scholar
Helming L, Tomasello E, Kyriakides TR, Martinez FO, Takai T, Gordon S, Vivier E: Essential role of DAP12 signaling in macrophage programming into a fusion-competent state. Sci Signal. 2008, 1: ra11-
Article
PubMed Central
PubMed
Google Scholar
Helming L, Winter J, Gordon S: The scavenger receptor CD36 plays a role in cytokine-induced macrophage fusion. J Cell Sci. 2009, 122: 453-459. 10.1242/jcs.037200.
Article
PubMed Central
CAS
PubMed
Google Scholar
MacLauchlan S, Skokos EA, Meznarich N, Zhu DH, Raoof S, Shipley JM, Senior RM, Bornstein P, Kyriakides TR: Macrophage fusion, giant cell formation, and the foreign body response require matrix metalloproteinase 9. J Leukoc Biol. 2009, 85: 617-626. 10.1189/jlb.1008588.
Article
PubMed Central
CAS
PubMed
Google Scholar
Van den Bossche J, Bogaert P, Van Hengel J, Guerin CJ, Berx G, Movahedi K, Van den Bergh R, Pereira-Fernandes A, Geuns JM, Pircher H, Dorny P, Grooten J, De Baetselier P, Van Ginderachter JA: Alternatively activated macrophages engage in homotypic and heterotypic interactions through IL-4 and polyamine-induced E-cadherin/catenin complexes. Blood. 2009, 114: 4664-4674. 10.1182/blood-2009-05-221598.
Article
CAS
PubMed
Google Scholar
Yu M, Qi X, Moreno JL, Farber DL, Keegan AD: NF-kappaB signaling participates in both RANKL- and IL-4-induced macrophage fusion: receptor cross-talk leads to alterations in NF-kappaB pathways. J Immunol. 2011, 187: 1797-1806. 10.4049/jimmunol.1002628.
Article
PubMed Central
CAS
PubMed
Google Scholar
French CT, Toesca IJ, Wu TH, Teslaa T, Beaty SM, Wong W, Liu M, Schroder I, Chiou PY, Teitell MA, Miller JF: Dissection of the Burkholderia intracellular life cycle using a photothermal nanoblade. Proc Natl Acad Sci U S A. 2011, 108: 12095-12100. 10.1073/pnas.1107183108.
Article
PubMed Central
CAS
PubMed
Google Scholar
Horton RE, Grant GD, Matthews B, Batzloff M, Owen SJ, Kyan S, Flegg CP, Clark AM, Ulett GC, Morrison N, Peak IR, Beacham IR: Quorum sensing negatively regulates multinucleate cell formation during intracellular growth of Burkholderia pseudomallei in macrophage-like cells. PLoS One. 2013, 8: e63394-10.1371/journal.pone.0063394.
Article
PubMed Central
PubMed
Google Scholar
Kespichayawattana W, Rattanachetkul S, Wanun T, Utaisincharoen P, Sirisinha S: Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect Immun. 2000, 68: 5377-5384. 10.1128/IAI.68.9.5377-5384.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wong KT, Puthucheary SD, Vadivelu J: The histopathology of human melioidosis. Histopathology. 1995, 26: 51-55. 10.1111/j.1365-2559.1995.tb00620.x.
Article
CAS
PubMed
Google Scholar
Boddey JA, Day CJ, Flegg CP, Ulrich RL, Stephens SR, Beacham IR, Morrison NA, Peak IR: The bacterial gene lfpA influences the potent induction of calcitonin receptor and osteoclast-related genes in Burkholderia pseudomallei-induced TRAP-positive multinucleated giant cells. Cell Microbiol. 2007, 9: 514-531. 10.1111/j.1462-5822.2006.00807.x.
Article
CAS
PubMed
Google Scholar
Brett PJ, Burtnick MN, Su H, Nair V, Gherardini FC: iNOS activity is critical for the clearance of Burkholderia mallei from infected RAW 264.7 murine macrophages. Cell Microbiol. 2008, 10: 487-498.
PubMed Central
CAS
PubMed
Google Scholar
Burtnick MN, Brett PJ, Nair V, Warawa JM, Woods DE, Gherardini FC: Burkholderia pseudomallei type III secretion system mutants exhibit delayed vacuolar escape phenotypes in RAW 264.7 murine macrophages. Infect Immun. 2008, 76: 2991-3000. 10.1128/IAI.00263-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Harley VS, Dance DA, Drasar BS, Tovey G: Effects of Burkholderia pseudomallei and other Burkholderia species on eukaryotic cells in tissue culture. Microbios. 1998, 96: 71-93.
CAS
PubMed
Google Scholar
Pilatz S, Breitbach K, Hein N, Fehlhaber B, Schulze J, Brenneke B, Eberl L, Steinmetz I: Identification of Burkholderia pseudomallei genes required for the intracellular life cycle and in vivo virulence. Infect Immun. 2006, 74: 3576-3586. 10.1128/IAI.01262-05.
Article
PubMed Central
CAS
PubMed
Google Scholar
Suparak S, Kespichayawattana W, Haque A, Easton A, Damnin S, Lertmemongkolchai G, Bancroft GJ, Korbsrisate S: Multinucleated giant cell formation and apoptosis in infected host cells is mediated by Burkholderia pseudomallei type III secretion protein BipB. J Bacteriol. 2005, 187: 6556-6560. 10.1128/JB.187.18.6556-6560.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Whitmore A: An Account of a Glanders-like Disease occurring in Rangoon. J Hyg. 1913, 13: 1-34 31. 10.1017/S0022172400005234.
Article
PubMed Central
CAS
PubMed
Google Scholar
Schell MA, Ulrich RL, Ribot WJ, Brueggemann EE, Hines HB, Chen D, Lipscomb L, Kim HS, Mrazek J, Nierman WC, Deshazer D: Type VI secretion is a major virulence determinant in Burkholderia mallei. Mol Microbiol. 2007, 64: 1466-1485. 10.1111/j.1365-2958.2007.05734.x.
Article
CAS
PubMed
Google Scholar
Shalom G, Shaw JG, Thomas MS: In vivo expression technology identifies a type VI secretion system locus in Burkholderia pseudomallei that is induced upon invasion of macrophages. Microbiology. 2007, 153: 2689-2699. 10.1099/mic.0.2007/006585-0.
Article
CAS
PubMed
Google Scholar
Muangsombut V, Suparak S, Pumirat P, Damnin S, Vattanaviboon P, Thongboonkerd V, Korbsrisate S: Inactivation of Burkholderia pseudomallei bsaQ results in decreased invasion efficiency and delayed escape of bacteria from endocytic vesicles. Arch Microbiol. 2008, 190: 623-631. 10.1007/s00203-008-0413-3.
Article
CAS
PubMed
Google Scholar
Burtnick MN, Brett PJ, Harding SV, Ngugi SA, Ribot WJ, Chantratita N, Scorpio A, Milne TS, Dean RE, Fritz DL, Peacock SJ, Prior JL, Atkins TP, Deshazer D: The cluster 1 type VI secretion system is a major virulence determinant in Burkholderia pseudomallei. Infect Immun. 2011, 79: 1512-1525. 10.1128/IAI.01218-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Utaisincharoen P, Arjcharoen S, Limposuwan K, Tungpradabkul S, Sirisinha S: Burkholderia pseudomallei RpoS regulates multinucleated giant cell formation and inducible nitric oxide synthase expression in mouse macrophage cell line (RAW 264.7). Microb Pathog. 2006, 40: 184-189. 10.1016/j.micpath.2006.01.002.
Article
CAS
PubMed
Google Scholar
Toesca IJ, French CT, Miller JF: The T6SS-5 VgrG spike protein mediates membrane fusion during intercellular spread by pseudomallei-group Burkholderia species. Infect Immun. 2014, 82: 1436-1444. 10.1128/IAI.01367-13.
Article
PubMed Central
PubMed
Google Scholar
Bullen A: Microscopic imaging techniques for drug discovery. Nat Rev Drug Discov. 2008, 7: 54-67. 10.1038/nrd2446.
Article
CAS
PubMed
Google Scholar
Christophe T, Jackson M, Jeon HK, Fenistein D, Contreras-Dominguez M, Kim J, Genovesio A, Carralot JP, Ewann F, Kim EH, Lee SY, Kang S, Seo MJ, Park EJ, Skovierova H, Pham H, Riccardi G, Nam JY, Marsollier L, Kempf M, Joly-Guillou ML, Oh T, Shin WK, No Z, Nehrbass U, Brosch R, Cole ST, Brodin P: High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog. 2009, 5: e1000645-10.1371/journal.ppat.1000645.
Article
PubMed Central
PubMed
Google Scholar
Gurumurthy RK, Maurer AP, Machuy N, Hess S, Pleissner KP, Schuchhardt J, Rudel T, Meyer TF: A loss-of-function screen reveals Ras- and Raf-independent MEK-ERK signaling during Chlamydia trachomatis infection. Sci Signal. 2010, 3: ra21-
Article
PubMed
Google Scholar
Lang P, Yeow K, Nichols A, Scheer A: Cellular imaging in drug discovery. Nat Rev Drug Discov. 2006, 5: 343-356. 10.1038/nrd2008.
Article
CAS
PubMed
Google Scholar
Low J, Stancato L, Lee J, Sutherland JJ: Prioritizing hits from phenotypic high-content screens. Curr Opin Drug Discov Devel. 2008, 11: 338-345.
CAS
PubMed
Google Scholar
Misselwitz B, Dilling S, Vonaesch P, Sacher R, Snijder B, Schlumberger M, Rout S, Stark M, Von Mering C, Pelkmans L, Hardt WD: RNAi screen of Salmonella invasion shows role of COPI in membrane targeting of cholesterol and Cdc42. Mol Syst Biol. 2011, 7: 474-
Article
PubMed Central
CAS
PubMed
Google Scholar
Perlman ZE, Slack MD, Feng Y, Mitchison TJ, Wu LF, Altschuler SJ: Multidimensional drug profiling by automated microscopy. Science. 2004, 306: 1194-1198. 10.1126/science.1100709.
Article
CAS
PubMed
Google Scholar
Tanaka M, Bateman R, Rauh D, Vaisberg E, Ramachandani S, Zhang C, Hansen KC, Burlingame AL, Trautman JK, Shokat KM, Adams CL: An unbiased cell morphology-based screen for new, biologically active small molecules. PLoS Biol. 2005, 3: e128-10.1371/journal.pbio.0030128.
Article
PubMed Central
PubMed
Google Scholar
Young DW, Bender A, Hoyt J, McWhinnie E, Chirn GW, Tao CY, Tallarico JA, Labow M, Jenkins JL, Mitchison TJ, Feng Y: Integrating high-content screening and ligand-target prediction to identify mechanism of action. Nat Chem Biol. 2008, 4: 59-68. 10.1038/nchembio.2007.53.
Article
CAS
PubMed
Google Scholar
Warawa J, Woods DE: Type III secretion system cluster 3 is required for maximal virulence of Burkholderia pseudomallei in a hamster infection model. FEMS Microbiol Lett. 2005, 242: 101-108. 10.1016/j.femsle.2004.10.045.
Article
CAS
PubMed
Google Scholar
Bierne H, Hamon M, Cossart P: Epigenetics and bacterial infections. Cold Spring Harbor Perspectives in Medicine. 2012, 2: a010272-
Article
PubMed Central
PubMed
Google Scholar
Heine HS, England MJ, Waag DM, Byrne WR: In vitro antibiotic susceptibilities of Burkholderia mallei (causative agent of glanders) determined by broth microdilution and E-test. Antimicrob Agents Chemother. 2001, 45: 2119-2121. 10.1128/AAC.45.7.2119-2121.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wilson K: Preparation of genomic DNA from bacteria. Curr Protoc Mol Biol. 2001, 00: 2.4.1-2.4.5.
Google Scholar
Hamad MA, Zajdowicz SL, Holmes RK, Voskuil MI: An allelic exchange system for compliant genetic manipulation of the select agents Burkholderia pseudomallei and Burkholderia mallei. Gene. 2009, 430: 123-131. 10.1016/j.gene.2008.10.011.
Article
PubMed Central
CAS
PubMed
Google Scholar
DeShazer D, Brett PJ, Carlyon R, Woods DE: Mutagenesis of Burkholderia pseudomallei with Tn5-OT182: isolation of motility mutants and molecular characterization of the flagellin structural gene. J Bacteriol. 1997, 179: 2116-2125.
PubMed Central
CAS
PubMed
Google Scholar
Ulrich RL, Amemiya K, Waag DM, Roy CJ, DeShazer D: Aerogenic vaccination with a Burkholderia mallei auxotroph protects against aerosol-initiated glanders in mice. Vaccine. 2005, 23: 1986-1992. 10.1016/j.vaccine.2004.10.017.
Article
CAS
PubMed
Google Scholar