Denman KL, Brasseur G, Chidthaisong A, Ciais P, Cox PM, Dickinson RE, Hauglustaine D, Heinze C, Holland E, Jacob D, Lohmann U, Ramachandran S, da Silva Dias PL, Wofsy SC, Zhang X: Couplings Between Changes in the Climate System and Biogeochemistry. Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Edited by: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL. 2007, Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press
Google Scholar
Semrau JD, DiSpirito AA, Yoon S: Methanotrophs and copper. FEMS Microbiol Rev. 2010, 34: 496-531.
Article
CAS
PubMed
Google Scholar
Dedysh SN: Exploring methanotroph diversity in acidic northern wetlands: Molecular and cultivation-based studies. Microbiology. 2009, 78: 655-669. 10.1134/S0026261709060010.
Article
CAS
Google Scholar
Hanson RS, Hanson TE: Methanotrophic bacteria. Microbiol Rev. 1996, 60: 439-471.
PubMed Central
CAS
PubMed
Google Scholar
Op den Camp HJM, Islam T, Stott MB, Harhangi HR, Hynes A, Schouten S, Jetten MSM, Birkeland NK, Pol A, Dunfield PF: Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environ Microbiol Rep. 2009, 1: 293-306. 10.1111/j.1758-2229.2009.00022.x.
Article
CAS
PubMed
Google Scholar
Stein LY, Klotz MG: Nitrifying and denitrifying pathways of methanotrophic bacteria. Biochem Soc Trans. 2011, 39: 1826-1831. 10.1042/BST20110712.
Article
CAS
PubMed
Google Scholar
Bowman JP, Sly LI, Nichols PD, Hayward AC: Revised taxonomy of the methanotrophs - Description of Methylobacter Gen-Nov, emendation of Methylococcus, validation of Methylosinus and Methylocystis species, and a proposal that the family Methylococcaceae includes only the group-I methanotrophs. Int J Syst Bacteriol. 1993, 43: 735-753. 10.1099/00207713-43-4-735.
Article
Google Scholar
Nyerges G, Han SK, Stein LY: Effects of Ammonium and Nitrite on Growth and Competitive Fitness of Cultivated Methanotrophic Bacteria. Appl Environ Microbiol. 2010, 76: 5648-5651. 10.1128/AEM.00747-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Campbell MA, Nyerges G, Kozlowski JA, Poret-Peterson AT, Stein LY, Klotz MG: Model of the molecular basis for hydroxylamine oxidation and nitrous oxide production in methanotrophic bacteria. FEMS Microbiol Lett. 2011, 322: 82-89. 10.1111/j.1574-6968.2011.02340.x.
Article
CAS
PubMed
Google Scholar
Nyerges G, Stein LY: Ammonia cometabolism and product inhibition vary considerably among species of methanotrophic bacteria. FEMS Microbiol Lett. 2009, 297: 131-136. 10.1111/j.1574-6968.2009.01674.x.
Article
CAS
PubMed
Google Scholar
Murrell JC, Dalton H: Nitrogen-fixation in obligate methanotrophs. J Gen Microbiol. 1983, 129: 3481-3486.
CAS
Google Scholar
Auman AJ, Speake CC, Lidstrom ME: nifH sequences and nitrogen fixation in type I and type II methanotrophs. Appl Environ Microbiol. 2001, 67: 4009-4016. 10.1128/AEM.67.9.4009-4016.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Boulygina ES, Kuznetsov BB, Marusina AI, Turova TP, Kravchenko IK, Bykova SA, Kolganova TV, Gal'chenko VF: Study of nucleotide sequences of nifH genes in methanotrophic bacteria. Mikrobiologiia. 2002, 71: 500-508.
Google Scholar
Khadem AF, Pol A, Jetten MS, Op den Camp HJ: Nitrogen fixation by the verrucomicrobial methanotroph ‘Methylacidiphilum fumariolicum’ SolV. Microbiology. 2010, 156: 1052-1059. 10.1099/mic.0.036061-0.
Article
CAS
PubMed
Google Scholar
King GM, Schnell S: Effects of ammonium and non-ammonium salt additions on methane oxidation by Methylosinus trichosporium OB3b and Maine forest soils. Appl Environ Microbiol. 1998, 64: 253-257.
PubMed Central
CAS
PubMed
Google Scholar
Schnell S, King GM: Mechanistic analysis of ammonium inhibition of atmospheric methane consumption in forest soils. Appl Environ Microbiol. 1994, 60: 3514-3521.
PubMed Central
CAS
PubMed
Google Scholar
Bodelier PL, Roslev P, Henckel T, Frenzel P: Stimulation by ammonium-based fertilizers of methane oxidation in soil around rice roots. Nature. 2000, 403: 421-424. 10.1038/35000193.
Article
CAS
PubMed
Google Scholar
Noll M, Frenzel P, Conrad R: Selective stimulation of type I methanotrophs in a rice paddy soil by urea fertilization revealed by RNA-based stable isotope probing. FEMS Microbiol Ecol. 2008, 65: 125-132. 10.1111/j.1574-6941.2008.00497.x.
Article
CAS
PubMed
Google Scholar
Mohanty SR, Bodelier PLE, Floris V, Conrad R: Differential effects of nitrogenous fertilizers on methane-consuming microbes in rice field and forest soils. Appl Environ Microbiol. 2006, 72: 1346-1354. 10.1128/AEM.72.2.1346-1354.2006.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bodelier PLE, Laanbroek HJ: Nitrogen as a regulatory factor of methane oxidation in soils and sediments. FEMS Microbiol Ecol. 2004, 47: 265-277. 10.1016/S0168-6496(03)00304-0.
Article
CAS
PubMed
Google Scholar
Ho A, Kerckhof F-M, Luke C, Reim A, Krause S, Boon N, Bodelier PL: Conceptualizing functional traits and ecological characteristics of methane-oxidizing bacteria as life strategies. Environ Microbiol Rep. 2013, 5 (3): 335-345. 10.1111/j.1758-2229.2012.00370.x.
Article
CAS
PubMed
Google Scholar
Vandamme P, Pot B, Gillis M, DeVos P, Kersters K, Swings J: Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev. 1996, 60: 407-438.
PubMed Central
CAS
PubMed
Google Scholar
Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW: Niche Partitioning Among Prochlorococcus Ecotypes Along Ocean-Scale Environmental Gradients. Science. 2006, 311: 1737-1740. 10.1126/science.1118052.
Article
CAS
PubMed
Google Scholar
Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF: Resource Partitioning and Sympatric Differentiation Among Closely Related Bacterioplankton. Science. 2008, 320: 1081-1085. 10.1126/science.1157890.
Article
CAS
PubMed
Google Scholar
Bowman J: The Methanotrophs - The Families Methylococcaceae and Methylocystaceae. Chapter 3.1.14. The Prokaryotes, Volume 5. Edited by: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E. 2006, 266-289. Third
Chapter
Google Scholar
Ogiso T, Ueno C, Dianou D, Huy TV, Katayama A, Kimura M, Asakawa S: Methylomonas koyamae sp nov., a type I methane-oxidizing bacterium from floodwater of a rice paddy field. Int J Syst Evol Microbiol. 2012, 62: 1832-1837. 10.1099/ijs.0.035261-0.
Article
CAS
PubMed
Google Scholar
Danilova OV, Kulichevskaya IS, Rozova ON, Detkova EN, Bodelier PL, Trotsenko YA, Dedysh SN: Methylomonas paludis sp. nov., the first acid-tolerant member of the genus Methylomonas, from an acidic wetland. Int J Syst Evol Microbiol. 2012, 63: 2282-2289.
Article
PubMed
Google Scholar
Anthony C: Biochemistry of methylotrophs. 1982, London: The Academic Press
Google Scholar
Vine CE, Cole JA: Nitrosative stress in Escherichia coli: reduction of nitric oxide. Biochem Soc Trans. 2011, 39: 313-315.
Article
Google Scholar
Zumft WG: Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme–copper oxidase type. J Inorg Biochem. 2005, 99: 194-215. 10.1016/j.jinorgbio.2004.09.024.
Article
CAS
PubMed
Google Scholar
Zumft WG, Braun C, Cuypers H: Nitric oxide reductase from Pseudomonas stutzeri. Primary structure and gene organization of a novel bacterial cytochrome bc complex. Eur J Biochem. 1994, 219: 418-490.
Article
Google Scholar
Hino T, Nagano S, Sugimoto H, Tosha T, Shiro Y: Molecular structure and function of bacterial nitric oxide reductase. Biochim Biophys Acta. 1817, 2011: 680-687.
Google Scholar
Stein LY: Surveying N2O-producing pathways in bacteria. Methods in Enzymology: research on nitrification and related processes, Volume 486. Edited by: Klotz MG. 2011, San Diego: Elsevier Academic Press, 131-152.
Chapter
Google Scholar
Smith MS, Zimmerman K: Nitrous oxide production by nondenitrifying soil nitrate reducers. Soil Sci Soc Am J. 1981, 45: 865-871. 10.2136/sssaj1981.03615995004500050008x.
Article
CAS
Google Scholar
Smith MS: Nitrous oxide production by Escherichia coli is correlated with nitrate reductase activity. Appl Environ Microbiol. 1983, 45: 1545-1547.
PubMed Central
CAS
PubMed
Google Scholar
Vorob'ev AV, Dedysh SN: Inadequacy of enrichment culture technique for assessing the structure of methanotrophic communities in peat soil. Microbiology. 2008, 77: 504-507. 10.1134/S0026261708040188.
Article
Google Scholar
Park SH, Shah NN, Taylor RT, Droege MW: Batch cultivation of Methylosinus trichosporium OB3b. 2. Production of particulate methane monooxygenase. Biotechnol Bioeng. 1992, 40: 151-157. 10.1002/bit.260400121.
Article
CAS
PubMed
Google Scholar
Lee SW, Im J, DiSpirito AA, Bodrossy L, Barcelona MJ, Semrau JD: Effect of nutrient and selective inhibitor amendments on methane oxidation, nitrous oxide production, and key gene presence and expression in landfill cover soils: characterization of the role of methanotrophs, nitrifiers, and denitrifiers. Appl Microbiol Biotechnol. 2009, 85: 389-403. 10.1007/s00253-009-2238-7.
Article
CAS
PubMed
Google Scholar
Hoefman S, Heylen K, de Vos P: Methylomonas lenta sp. nov., a methanotroph isolated from manure and a denitrification tank in Belgium. Int J Syst Evol Microbiol. 2014, 4: doi: 10.1099/ijs.0.057794-0
Google Scholar
Hoefman S, van der Ha D, De Vos P, Boon N, Heylen K: Miniaturized extinction culturing is the preferred strategy for rapid isolation of fast-growing methane-oxidizing bacteria. Microb Biotechnol. 2012, 5: 368-378. 10.1111/j.1751-7915.2011.00314.x.
Article
PubMed Central
PubMed
Google Scholar
Dunfield PF, Khmelenina VN, Suzina NE, Trotsenko YA, Dedysh SN: Methylocella silvestris sp nov., a novel methanotroph isolated from an acidic forest cambisol. Int J Syst Evol Microbiol. 2003, 53: 1231-1239. 10.1099/ijs.0.02481-0.
Article
CAS
PubMed
Google Scholar
Griess P: Bemerkungen zu der abhandlung der H.H. Weselsky und Benedikt “Ueber einige azoverbindungen”. Chem Ber. 1879, 12: 426-428. 10.1002/cber.187901201117.
Article
Google Scholar
Cataldo DA, Maroon M, Schrader LE, Youngs VL: Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun Soil Sci Plant Anal. 1975, 6: 71-80. 10.1080/00103627509366547.
Article
CAS
Google Scholar
Taylor S, Ninjoor V, Dowd DM, Tappel AL: Cathepsin B2 measurement by sensitive fluorometric ammonia analysis. Anal Biochem. 1974, 60: 153-162. 10.1016/0003-2697(74)90140-7.
Article
CAS
PubMed
Google Scholar
Hoefman S, van der Ha D, Boon N, Vandamme P, De Vos P, Heylen K: Customized media based on miniaturized screening improve growth rate and cell yield of methane-oxidizing bacteria of the genus Methylomonas. Antonie Van Leeuwenhoek. 2014, 105: 353-366. 10.1007/s10482-013-0083-2.
Article
CAS
PubMed
Google Scholar
Coenye T, Spilker T, Martin A, LiPuma JJ: Comparative assessment of genotyping methods for epidemiologic study of Burkholderia cepacia genomovar III. J Clin Microbiol. 2002, 40: 3300-3307. 10.1128/JCM.40.9.3300-3307.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Costello AM, Lidstrom ME: Molecular Characterization of Functional and Phylogenetic Genes from Natural Populations of Methanotrophs in Lake Sediments. Appl Environ Microbiol. 1999, 65: 5066-5074.
PubMed Central
CAS
PubMed
Google Scholar
De Meyer SE, van Hoorde K, Vekeman B, Braeckman T, Willems A: Genetic diversity of rhizobia associated with indigenous legumes in different regions of Flanders (Belgium). Soil Biol Biochem. 2011, 43: 2384-2396. 10.1016/j.soilbio.2011.08.005.
Article
CAS
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
CAS
PubMed
Google Scholar
Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar , Buchner A, Lai T, Steppi S, Jobb G, Förster W, Brettske I, Gerber S, Ginhart AW, Gross O, Grumann S, Hermann S, Jost R, König A, Liss T, Lüssmann R, May M, Nonhoff B, Reichel B, Strehlow R, Stamatakis A, Stuckmann N, Vilbig A, Lenke M, Ludwig T, Bode A, Schleifer KH: ARB: a software environment for sequence data. Nucleic Acids Res. 2004, 32: 1363-1371. 10.1093/nar/gkh293.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011, 28: 2731-2739. 10.1093/molbev/msr121.
Article
PubMed Central
CAS
PubMed
Google Scholar