Laible G, Hakenbeck R: Penicillin-binding proteins in β-lactam-resistant laboratory mutants of Streptococcus pneumoniae. Mol Microbiol. 1987, 1: 355-363. 10.1111/j.1365-2958.1987.tb01942.x.
Article
CAS
PubMed
Google Scholar
Hakenbeck R, Tornette S, Adkinson NF: Interaction of non-lytic β-lactams with penicillin-binding proteins in Streptococcus pneumoniae. J Gen Microbiol. 1987, 133: 755-760.
CAS
PubMed
Google Scholar
Hakenbeck R, Martin C, Dowson C, Grebe T: Penicillin-binding protein 2b of Streptococcus pneumoniae in piperacillin-resistant laboratory mutants. J Bacteriol. 1994, 176: 5574-5577.
PubMed Central
CAS
PubMed
Google Scholar
Laible G, Hakenbeck R: Five independent combinations of mutations can result in low-affinity penicillin-binding protein 2x of Streptococcus pneumoniae. J Bacteriol. 1991, 173: 6986-6990.
PubMed Central
CAS
PubMed
Google Scholar
Krauß J, van der Linden M, Grebe T, Hakenbeck R: Penicillin-binding proteins 2x and 2b as primary PBP-targets in Streptococcus pneumoniae. Microb Drug Resist. 1996, 2: 183-186. 10.1089/mdr.1996.2.183.
Article
PubMed
Google Scholar
Hakenbeck R, Grebe T, Zähner D, Stock JB: β-Lactam resistance in Streptococcus pneumoniae: penicillin-binding proteins and non penicillin-binding proteins. Mol Microbiol. 1999, 33: 673-678. 10.1046/j.1365-2958.1999.01521.x.
Article
CAS
PubMed
Google Scholar
Grebe T, Paik J, Hakenbeck R: A novel resistance mechanism for β-lactams in Streptococcus pneumoniae involves CpoA, a putative glycosyltransferases. J Bacteriol. 1997, 179: 3342-3349.
PubMed Central
CAS
PubMed
Google Scholar
Li L, Storm P, Karlsson OP, Berg S, Wieslander A: Irreversible binding and activity control of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii at an anionic lipid bilayer surface. Biochemistry. 2003, 42: 9677-9686. 10.1021/bi034360l.
Article
CAS
PubMed
Google Scholar
Edman M, Berg S, Storm P, Wikström M, Vikström S, Öhmann A, Wieslander A: Structural features of glycosyltransferases synthesizing major bilayer and nonbilayer-prone membrane lipids in Acholeplasma laidlawii and Streptococcus pneumoniae. J Biol Chem. 2003, 278: 8420-8428. 10.1074/jbc.M211492200.
Article
CAS
PubMed
Google Scholar
Berg S, Edman M, Li L, Wikström M, Wieslander A: Sequence properties of the 1,2-diacylglycerol 3-glucosyltransferase from Acholeplasma laidlawii membranes. Recognition of a large group of lipid glycosyltransferases in eubacteria and archaea. J Biol Chem. 2001, 276: 22056-22063. 10.1074/jbc.M102576200.
Article
CAS
PubMed
Google Scholar
Tatituri RV, Brenner MB, Turk J, Hsu FF: Structural elucidation of diglycosyl diacylglycerol and monoglycosyl diacylglycerol from Streptococcus pneumoniae by multiple-stage linear ion-trap mass spectrometry with electrospray ionization. J Mass Spectrom. 2012, 47: 115-123. 10.1002/jms.2033.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brundish DE, Shaw N, Baddiley J: The phospholipids of Pneumococcus I-192R, A.T.C.C. 12213. Some structural rearrangements occurring under mild conditions. Biochem J. 1967, 104: 205-211.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wieslander A, Christiansson A, Rilfors L, Lindblom G: Lipid bilayer stability in membranes, Regulation of lipid composition in Acholeplasma laidlawii as governed by molecular shape. Biochemistry. 1980, 19: 3650-3655. 10.1021/bi00557a002.
Article
CAS
PubMed
Google Scholar
Seo HS, Cartee RT, Pritchard DG, Nahm MH: A new model of pneumococcal lipoteichoic acid structure resolves biochemical, biosynthetic, and serologic inconsistencies of the current model. J Bacteriol. 2008, 190: 2379-2387. 10.1128/JB.01795-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Song JH, Ko KS, Lee JY, Baek JY, Oh WS, Yoon HS, Jeong JY, Chun J: Identification of essential genes in Streptococcus pneumoniae by allelic replacement mutagenesis. Mol Cells. 2005, 19: 365-374.
CAS
PubMed
Google Scholar
Laursen BS, Sørensen HP, Mortensen KK, Sperling-Petersen HU: Initiation of protein synthesis in bacteria. Microbiol Mol Biol Rev. 2005, 69: 101-123. 10.1128/MMBR.69.1.101-123.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Denapaite D, Brückner R, Nuhn M, Reichmann P, Henrich B, Maurer P, Schähle Y, Selbmann P, Zimmermann W, Wambutt R, et al.: The genome of Streptococcus mitis B6 - what is a commensal?. PLoS ONE. 2010, 5: e9426-10.1371/journal.pone.0009426.
Article
PubMed Central
PubMed
Google Scholar
Reichmann P, Nuhn M, Denapaite D, Brückner R, Henrich B, Maurer P, Rieger M, Klages S, Reinhard R, Hakenbeck R: Genome of Streptococcus oralis strain Uo5. J Bacteriol. 2011, 193: 2888-2889. 10.1128/JB.00321-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Czyz A, Wegrzyn G: The Obg subfamily of bacterial GTP-binding proteins: essential proteins of largely unknown functions that are evolutionarily conserved from bacteria to humans. Acta Biochim Pol. 2005, 52: 35-43.
CAS
PubMed
Google Scholar
Hoskins J, Alborn WEJ, Arnold J, Blaszczak LC, Burgett S, DeHoff BS, Estrem ST, Fritz L, Fu D-J, Fuller W, et al.: Genome of the bacterium Streptococcus pneumoniae strain R6. J Bacteriol. 2001, 183: 5709-5717. 10.1128/JB.183.19.5709-5717.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sauerbier J, Maurer P, Rieger M, Hakenbeck R: Streptococcus pneumonia e R6 interspecies transformation: genetic analysis of penicillin resistance determinants and genome-wide recombination events. Mol Microbiol. 2012, 86: 692-706. 10.1111/mmi.12009.
Article
CAS
PubMed
Google Scholar
Fani F, Brotherton MC, Leprohon P, Ouellette M: Genomic analysis and reconstruction of cefotaxime resistance in Streptococcus pneumoniae. J Antimicrob Chemother. 2013, 68: 1718-1727. 10.1093/jac/dkt113.
Article
CAS
PubMed
Google Scholar
Shaw N: Bacterial glycolipids. Bacteriol Rev. 1970, 34: 365-377.
PubMed Central
CAS
PubMed
Google Scholar
Rottem S: Transbilayer distribution of lipids in microbial membranes. Curr Top Membr Trans. 1982, 17: 235-261.
Article
CAS
Google Scholar
Weik M, Patzelt H, Zaccai G, Oesterhelt D: Localization of glycolipids in membranes by in vivo labeling and neutron diffraction. Mol Cell. 1998, 1: 411-419. 10.1016/S1097-2765(00)80041-6.
Article
CAS
PubMed
Google Scholar
Henderson R, Jubb JS, Whytock S: Specific labelling of the protein and lipid on the extracellular surface of purple membrane. J Mol Biol. 1978, 123: 259-274. 10.1016/0022-2836(78)90325-X.
Article
CAS
PubMed
Google Scholar
Kamio Y, Nikaido H: Outer membrane of Salmonella typhimurium: accessibility of phospholipid head groups to phospholipase c and cyanogen bromide activated dextran in the external medium. Biochemistry. 1976, 15: 2561-2570. 10.1021/bi00657a012.
Article
CAS
PubMed
Google Scholar
Campelo F, McMahon HT, Kozlov MM: The hydrophobic insertion mechanism of membrane curvature generation by proteins. Biophys J. 2008, 95: 2325-2339. 10.1529/biophysj.108.133173.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wikström M, Kelly AA, Georgiev A, Eriksson HM, Klement MR, Bogdanov M, Dowhan W, Wieslander A: Lipid-engineered Escherichia coli membranes reveal critical lipid headgroup size for protein function. J Biol Chem. 2009, 284: 954-965.
Article
PubMed Central
PubMed
Google Scholar
Lopez CS, Alice AF, Heras H, Rivas EA, Sanchez-Rivas C: Role of anionic phospholipids in the adaptation of Bacillus subtilis to high salinity. Microbiology. 2006, 152: 605-616. 10.1099/mic.0.28345-0.
Article
CAS
PubMed
Google Scholar
Becker P, Hakenbeck R, Henrich B: An ABC transporter of Streptococcus pneumoniae involved in susceptibility to vancoresmycin and bacitracin. Antimicrob Agents Chemother. 2009, 53: 2034-2041. 10.1128/AAC.01485-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fischer W: Lipoteichoic acid and lipoglycans. Bacterial Cell Wall. Edited by: Ghuysen J-M, Hakenbeck R. 1994, Amsterdam: Elsevier Sciences BV, 199-211.
Chapter
Google Scholar
Rahman O, Dover LG, Sutcliffe IC: Lipoteichoic acid biosynthesis: two steps forwards, one step sideways?. Trends Microbiol. 2009, 17: 219-225. 10.1016/j.tim.2009.03.003.
Article
CAS
PubMed
Google Scholar
Fedtke I, Mader D, Kohler T, Moll H, Nicholson G, Biswas B, Henseler K, Götz F, Zähringer U: A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol. 2007, 65: 1078-1091. 10.1111/j.1365-2958.2007.05854.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kiriukhin MY, Debabov DV, Shinabarger DL, Neuhaus FC: Biosynthesis of the glycolipid anchor in lipoteichoic acid of Staphylococcus aureus RN4220: role of YpfP, the diglucosyldiacylglycerol synthase. J Bacteriol. 2001, 183: 3506-3514. 10.1128/JB.183.11.3506-3514.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jorasch P, Wolter FP, Zähringer U, Heinz E: A UDP glucosyltransferase from Bacillus subtilis successively transfers up to four glucose residues to 1,2-diacylglycerol: expression of ypfP in Escherichia coli and structural analysis of its reaction products. Mol Microbiol. 1998, 29: 419-430. 10.1046/j.1365-2958.1998.00930.x.
Article
CAS
PubMed
Google Scholar
Webb AJ, Karatsa-Dodgson M, Grundling A: Two-enzyme systems for glycolipid and polyglycerolphosphate lipoteichoic acid synthesis in Listeria monocytogenes. Mol Microbiol. 2009, 74: 299-314. 10.1111/j.1365-2958.2009.06829.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Doran KS, Engelson EJ, Khosravi A, Maisey HC, Fedtke I, Equils O, Michelsen KS, Arditi M, Peschel A, Nizet V: Blood–brain barrier invasion by group B Streptococcus depends upon proper cell-surface anchoring of lipoteichoic acid. J Clin Invest. 2005, 115: 2499-2507. 10.1172/JCI23829.
Article
PubMed Central
CAS
PubMed
Google Scholar
Theilacker C, Sanchez-Carballo P, Toma I, Fabretti F, Sava I, Kropec A, Holst O, Huebner J: Glycolipids are involved in biofilm accumulation and prolonged bacteraemia in Enterococcus faecalis. Mol Microbiol. 2009, 71: 1055-1069. 10.1111/j.1365-2958.2008.06587.x.
Article
CAS
PubMed
Google Scholar
Pakkiri LS, Wolucka BA, Lubert EJ, Waechter CJ: Structural and topological studies on the lipid-mediated assembly of a membrane-associated lipomannan in Micrococcus luteus. Glycobiology. 2004, 14: 73-81.
Article
CAS
PubMed
Google Scholar
Pakkiri LS, Waechter CJ: Dimannosyldiacylglycerol serves as a lipid anchor precursor in the assembly of the membrane-associated lipomannan in Micrococcus luteus. Glycobiology. 2005, 15: 291-302.
Article
CAS
PubMed
Google Scholar
Fischer W: Pneumococcal lipoteichoic and teichoic acid. Streptococcus pneumoniae - Molecular biology and mechanism of disease. Edited by: Tomasz A. 2000, Larchmont, NY: Mary Ann Liebert, Inc, 155-177. 10538
Google Scholar
Denapaite D, Brückner R, Hakenbeck R, Vollmer W: Biosynthesis of teichoic acids in Streptococcus pneumoniae and closely related species: lessons from genomes. Microb Drug Resist. 2012, 18: 344-358. 10.1089/mdr.2012.0026.
Article
CAS
PubMed
Google Scholar
Hakenbeck R, Madhour A, Denapaite D, Brückner R: Versatility of choline metabolism and choline binding proteins in Streptococcus pneumoniae and commensal streptococci. FEMS Microbiol Rev. 2009, 33: 572-586. 10.1111/j.1574-6976.2009.00172.x.
Article
CAS
PubMed
Google Scholar
Lacks S, Hotchkiss RD: A study of the genetic material determining an enzyme activity in pneumococcus. Biochim Biophys Acta. 1960, 39: 508-517. 10.1016/0006-3002(60)90205-5.
Article
CAS
PubMed
Google Scholar
Alloing G, Granadel C, Morrison DA, Claverys J-P: Competence pheromone, oligopeptide permease, and induction of competence in Streptococcus pneumoniae. Mol Microbiol. 1996, 21: 471-478. 10.1111/j.1365-2958.1996.tb02556.x.
Article
CAS
PubMed
Google Scholar
Mascher T, Merai M, Balmelle N, de Saizieu A, Hakenbeck R: The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis. J Bacteriol. 2003, 185: 60-70. 10.1128/JB.185.1.60-70.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sambrook J, Fritsch EF, Maniatis T: Molecular Cloning: A Laboratory Manual. 1989, Plainview, New York: Cold Spring Harbor Laboratory Press
Google Scholar
Kovács M, Halfmann A, Fedtke I, Heintz M, Peschel A, Vollmer W, Hakenbeck R, Brückner R: A functional dlt operon, encoding proteins required for incorporation of D-alanine in teichoic acids in gram-positive bacteria, confers resistance to cationic antimicrobial peptides in Streptococcus pneumoniae. J Bacteriol. 2006, 188: 5797-5805. 10.1128/JB.00336-06.
Article
PubMed Central
PubMed
Google Scholar
Sung CK, Li H, Claverys JP, Morrison DA: An rpsL cassette, janus, for gene replacement through negative selection in Streptococcus pneumoniae. Appl Environ Microbiol. 2001, 67: 5190-5196. 10.1128/AEM.67.11.5190-5196.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Salles C, Creancier L, Claverys JP, Méjean V: The high level streptomycin resistance gene from Streptococcus pneumoniae is a homologue of the ribosomal protein S12 gene from Escherichia coli. Nucleic Acids Res. 1992, 20: 6103-10.1093/nar/20.22.6103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Halfmann A, Hakenbeck R, Brückner R: A new integrative reporter plasmid for Streptococcus pneumoniae. FEMS Microbiol Lett. 2007, 268: 217-224. 10.1111/j.1574-6968.2006.00584.x.
Article
CAS
PubMed
Google Scholar
Arbogast LY, Henderson TO: Effect of inhibition of protein synthesis on lipid metabolism in Lactobacillus plantarum. J Bacteriol. 1975, 123: 962-971.
PubMed Central
CAS
PubMed
Google Scholar
Hakenbeck R, Ellerbrok H, Briese T, Handwerger S, Tomasz A: Penicillin-binding proteins of penicillin-susceptible and -resistant pneumococci: immunological relatedness of altered proteins and changes in peptides carrying the β-lactam binding site. Antimicrob Agents Chemother. 1986, 30: 553-558. 10.1128/AAC.30.4.553.
Article
PubMed Central
CAS
PubMed
Google Scholar
McKessar S, Hakenbeck R: The two-component regulatory system TCS08 is involved in cellobiose metabolism of Streptococcus pneumoniae R6. J Bacteriol. 2007, 189: 1342-1350. 10.1128/JB.01170-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Tettelin H, Nelson KE, Paulsen IT, Eisen JA, Read TD, Peterson S, Heidelberg J, DeBoy RT, Haft DH, Dodson RJ, et al.: Complete genome sequence of a virulent isolate of Streptococcus pneumoniae. Science. 2001, 293: 498-506. 10.1126/science.1061217.
Article
CAS
PubMed
Google Scholar
Ottolenghi E, Hotchkiss RD: Release of genetic transforming agent from pneumococcal cultures during growth and disintegration. J Exp Med. 1962, 116: 491-519. 10.1084/jem.116.4.491.
Article
PubMed Central
CAS
PubMed
Google Scholar