White NJ: Melioidosis. Lancet. 2003, 361: 1715-1722. 10.1016/S0140-6736(03)13374-0.
Article
CAS
PubMed
Google Scholar
Currie BJ, Jacups SP: Intensity of rainfall and severity of melioidosis, Australia. Emerg Infect Dis. 2003, 9: 1538-1542. 10.3201/eid0912.020750.
Article
PubMed Central
PubMed
Google Scholar
Leelarasamee A, Trakulsomboon S, Kusum M, Dejsirilert S: Isolation rates of Burkholderia pseudomallei among the four regions in Thailand. Southeast Asian J Trop Med Public Health. 1997, 28: 107-113.
CAS
PubMed
Google Scholar
Vuddhakul V, Tharavichitkul P, Na-Ngam N, Jitsurong S, Kunthawa B, Noimay P, Noimay P, Binla A, Thamlikitkul V: Epidemiology of Burkholderia pseudomallei in Thailand. Am J Trop Med Hyg. 1999, 60: 458-461.
CAS
PubMed
Google Scholar
Smith JJ, Travis SM, Greenberg EP, Welsh MJ: Cystic fibrosis airway epithelia fail to kill bacteria because of abnormal airway surface fluid. Cell. 1996, 85: 229-236. 10.1016/S0092-8674(00)81099-5.
Article
CAS
PubMed
Google Scholar
Joris L, Dab I, Quinton PM: Elemental composition of human airway surface fluid in healthy and diseased airways. Am Rev Respir Dis. 1993, 148: 1633-1637. 10.1164/ajrccm/148.6_Pt_1.1633.
Article
CAS
PubMed
Google Scholar
Vandamme P, Holmes B, Vancanneyt M, Coenye T, Hoste B, Coopman R, Revets H, Lauwers S, Gillis M, Kersters K, et al.: Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. Int J Syst Bacteriol. 1997, 47: 1188-1200. 10.1099/00207713-47-4-1188.
Article
CAS
PubMed
Google Scholar
Mahenthiralingam E, Baldwin A, Vandamme P: Burkholderia cepacia complex infection in patients with cystic fibrosis. J Med Microbiol. 2002, 51: 533-538.
Article
PubMed
Google Scholar
O’Carroll MR, Kidd TJ, Coulter C, Smith HV, Rose BR, Harbour C, Bell SC: Burkholderia pseudomallei: another emerging pathogen in cystic fibrosis. Thorax. 2003, 58: 1087-1091. 10.1136/thorax.58.12.1087.
Article
PubMed Central
PubMed
Google Scholar
O’Quinn AL, Wiegand EM, Jeddeloh JA: Burkholderia pseudomallei kills the nematode Caenorhabditis elegans using an endotoxin-mediated paralysis. Cell Microbiol. 2001, 3: 381-393. 10.1046/j.1462-5822.2001.00118.x.
Article
PubMed
Google Scholar
Pumirat P, Cuccui J, Stabler RA, Stevens JM, Muangsombut V, Singsuksawat E, Stevens MP, Wren BW, Korbsrisate S: Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system. BMC Microbiol. 2010, 10: 171-10.1186/1471-2180-10-171.
Article
PubMed Central
PubMed
Google Scholar
Pumirat P, Saetun P, Sinchaikul S, Chen ST, Korbsrisate S, Thongboonkerd V: Altered secretome of Burkholderia pseudomallei induced by salt stress. Biochim Biophys Acta. 2009, 1794: 898-904. 10.1016/j.bbapap.2009.01.011.
Article
CAS
PubMed
Google Scholar
Bhatt S, Weingart CL: Identification of sodium chloride-regulated genes in Burkholderia cenocepacia. Curr Microbiol. 2008, 56: 418-422. 10.1007/s00284-008-9114-z.
Article
CAS
PubMed
Google Scholar
Holden MT, Titball RW, Peacock SJ, Cerdeno-Tarraga AM, Atkins T, Crossman LC, Pitt T, Churcher C, Mungall K, Bentley SD, et al.: Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A. 2004, 101: 14240-14245. 10.1073/pnas.0403302101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ: Basic local alignment search tool. J Mol Biol. 1990, 215: 403-410.
Article
CAS
PubMed
Google Scholar
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, et al.: Clustal W and Clustal X version 2.0. Bioinformatics. 2007, 23: 2947-2948. 10.1093/bioinformatics/btm404.
Article
CAS
PubMed
Google Scholar
Schwede T, Kopp J, Guex N, Peitsch MC: SWISS-MODEL: An automated protein homology-modeling server. Nucleic Acids Res. 2003, 31: 3381-3385. 10.1093/nar/gkg520.
Article
PubMed Central
CAS
PubMed
Google Scholar
Laskowski RA, MacArthur MW, Moss DS, Thornton JM: PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Cryst. 1993, 26: 283-291. 10.1107/S0021889892009944.
Article
CAS
Google Scholar
Lopez CM, Rholl DA, Trunck LA, Schweizer HP: Versatile dual-technology system for markerless allele replacement in Burkholderia pseudomallei. Appl Environ Microbiol. 2009, 75: 6496-6503. 10.1128/AEM.01669-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Pauly HE, Pfleiderer G: D-glucose dehydrogenase from Bacillus megaterium M 1286: purification, properties and structure. Hoppe Seylers Z Physiol Chem. 1975, 356: 1613-1623. 10.1515/bchm2.1975.356.2.1613.
Article
CAS
PubMed
Google Scholar
Pruksachartvuthi S, Aswapokee N, Thankerngpol K: Survival of Pseudomonas pseudomallei in human phagocytes. J Med Microbiol. 1990, 31: 109-114. 10.1099/00222615-31-2-109.
Article
CAS
PubMed
Google Scholar
Jones AL, Beveridge TJ, Woods DE: Intracellular survival of Burkholderia pseudomallei. Infect Immun. 1996, 64: 782-790.
PubMed Central
CAS
PubMed
Google Scholar
Brown SA, Whiteley M: Characterization of the L-lactate dehydrogenase from Aggregatibacter actinomycetemcomitans. PLoS One. 2009, 4: e7864-10.1371/journal.pone.0007864.
Article
PubMed Central
PubMed
Google Scholar
Pruss BM, Nelms JM, Park C, Wolfe AJ: Mutations in NADH:ubiquinone oxidoreductase of Escherichia coli affect growth on mixed amino acids. J Bacteriol. 1994, 176: 2143-2150.
PubMed Central
CAS
PubMed
Google Scholar
Rodriguez-Montelongo L, Volentini SI, Farias RN, Massa EM, Rapisarda VA: The Cu (II)-reductase NADH dehydrogenase-2 of Escherichia coli improves the bacterial growth in extreme copper concentrations and increases the resistance to the damage caused by copper and hydroperoxide. Arch Biochem Biophys. 2006, 451: 1-7. 10.1016/j.abb.2006.04.019.
Article
CAS
PubMed
Google Scholar
Chantratita N, Wuthiekanun V, Boonbumrung K, Tiyawisutsri R, Vesaratchavest M, Limmathurotsakul D, Chierakul W, Wongratanacheewin S, Pukritiyakamee S, White NJ, et al.: Biological relevance of colony morphology and phenotypic switching by Burkholderia pseudomallei. J Bacteriol. 2007, 189: 807-817. 10.1128/JB.01258-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fu HS, Hassett DJ, Cohen MS: Oxidant stress in Neisseria gonorrhoeae: adaptation and effects on L-(+)-lactate dehydrogenase activity. Infect Immun. 1989, 57: 2173-2178.
PubMed Central
CAS
PubMed
Google Scholar
Liu L, Hausladen A, Zeng M, Que L, Heitman J, Stamler JS, Steverding D: Nitrosative stress: protection by glutathione-dependent formaldehyde dehydrogenase. Redox Rep. 2001, 6: 209-210. 10.1179/135100001101536337.
Article
CAS
PubMed
Google Scholar
Messner KR, Imlay JA: Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem. 2002, 277: 42563-42571. 10.1074/jbc.M204958200.
Article
CAS
PubMed
Google Scholar
Cabiscol E, Tamarit J, Ros J: Oxidative stress in bacteria and protein damage by reactive oxygen species. Int Microbiol. 2000, 3: 3-8.
CAS
PubMed
Google Scholar
Weerakoon DR, Borden NJ, Goodson CM, Grimes J, Olson JW: The role of respiratory donor enzymes in Campylobacter jejuni host colonization and physiology. Microb Pathog. 2009, 47: 8-15. 10.1016/j.micpath.2009.04.009.
Article
CAS
PubMed
Google Scholar
Miller JL, Velmurugan K, Cowan MJ, Briken V: The type I NADH dehydrogenase of Mycobacterium tuberculosis counters phagosomal NOX2 activity to inhibit TNF-alpha-mediated host cell apoptosis. PLoS Pathog. 2010, 6: e1000864-10.1371/journal.ppat.1000864.
Article
PubMed Central
PubMed
Google Scholar
Hoper D, Volker U, Hecker M: Comprehensive characterization of the contribution of individual SigB-dependent general stress genes to stress resistance of Bacillus subtilis. J Bacteriol. 2005, 187: 2810-2826. 10.1128/JB.187.8.2810-2826.2005.
Article
PubMed Central
PubMed
Google Scholar
Widdicombe JH: Altered NaCl concentration of airway surface liquid in cystic fibrosis. Pflugers Arch. 2001, 443 (Suppl 1): S8-S10.
CAS
PubMed
Google Scholar
Yamamoto T: Stress response of pathogenic bacteria–are stress proteins virulence factors?. Nihon Saikingaku Zasshi. 1996, 51: 1025-1036. 10.3412/jsb.51.1025.
Article
CAS
PubMed
Google Scholar
Inglis TJ, Sagripanti JL: Environmental factors that affect the survival and persistence of Burkholderia pseudomallei. Appl Environ Microbiol. 2006, 72: 6865-6875. 10.1128/AEM.01036-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Robertson J, Levy A, Sagripanti JL, Inglis TJ: The survival of Burkholderia pseudomallei in liquid media. Am J Trop Med Hyg. 2010, 82: 88-94. 10.4269/ajtmh.2010.09-0226.
Article
PubMed Central
PubMed
Google Scholar
Jornvall H, Persson B, Krook M, Atrian S, Gonzalez-Duarte R, Jeffery J, Ghosh D: Short-chain dehydrogenases/reductases (SDR). Biochemistry. 1995, 34: 6003-6013. 10.1021/bi00018a001.
Article
CAS
PubMed
Google Scholar
Rodrigues F, Sarkar-Tyson M, Harding SV, Sim SH, Chua HH, Lin CH, Han X, Karuturi RK, Sung K, Yu K, et al.: Global map of growth-regulated gene expression in Burkholderia pseudomallei, the causative agent of melioidosis. J Bacteriol. 2006, 188: 8178-8188. 10.1128/JB.01006-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Purves J, Cockayne A, Moody PC, Morrissey JA: Comparison of the regulation, metabolic functions, and roles in virulence of the glyceraldehyde-3-phosphate dehydrogenase homologues gapA and gapB in Staphylococcus aureus. Infect Immun. 2010, 78: 5223-5232. 10.1128/IAI.00762-10.
Article
PubMed Central
CAS
PubMed
Google Scholar
Laouami S, Messaoudi K, Alberto F, Clavel T, Duport C: Lactate dehydrogenase A promotes communication between carbohydrate catabolism and virulence in Bacillus cereus. J Bacteriol. 2011, 193: 1757-1766. 10.1128/JB.00024-11.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jagadeesan B, Koo OK, Kim KP, Burkholder KM, Mishra KK, Aroonnual A, Bhunia AK: LAP, an alcohol acetaldehyde dehydrogenase enzyme in Listeria, promotes bacterial adhesion to enterocyte-like Caco-2 cells only in pathogenic species. Microbiology. 2010, 156: 2782-2795. 10.1099/mic.0.036509-0.
Article
CAS
PubMed
Google Scholar
Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, Ehrt S, Nathan C: Virulence of Mycobacterium tuberculosis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe. 2011, 9: 21-31. 10.1016/j.chom.2010.12.004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Brzezinska M, Szulc I, Brzostek A, Klink M, Kielbik M, Sulowska Z, Pawelczyk J, Dziadek J: The role of 3-ketosteroid 1(2)-dehydrogenase in the pathogenicity of Mycobacterium tuberculosis. BMC Microbiol. 2013, 13: 43-10.1186/1471-2180-13-43.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bijtenhoorn P, Mayerhofer H, Müller-Dieckmann J, Utpatel C, Schipper C, Hornung C, Szesny M, Grond S, Thürmer A, Brzuszkiewicz E, et al.: A novel metagenomic short-chain dehydrogenase/reductase attenuates Pseudomonas aeruginosa biofilm formation and virulence on Caenorhabditis elegans. PLoS One. 2011, 6: e26278-10.1371/journal.pone.0026278.
Article
PubMed Central
CAS
PubMed
Google Scholar
Burtnick MN, Brett PJ, Nair V, Warawa JM, Woods DE, Gherardini FC: Burkholderia pseudomallei type III secretion system mutants exhibit delayed vacuolar escape phenotypes in RAW 264.7 murine macrophages. Infect Immun. 2008, 76: 2991-3000. 10.1128/IAI.00263-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Muangsombut V, Suparak S, Pumirat P, Damnin S, Vattanaviboon P, Thongboonkerd V, Korbsrisate S: Inactivation of Burkholderia pseudomallei bsaQ results in decreased invasion efficiency and delayed escape of bacteria from endocytic vesicles. Arch Microbiol. 2008, 190: 623-631. 10.1007/s00203-008-0413-3.
Article
CAS
PubMed
Google Scholar
Seib KL, Wu HJ, Kidd SP, Apicella MA, Jennings MP, McEwan AG: Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol Mol Biol Rev. 2006, 70: 344-361. 10.1128/MMBR.00044-05.
Article
PubMed Central
CAS
PubMed
Google Scholar
Seib KL, Tseng HJ, McEwan AG, Apicella MA, Jennings MP: Defenses against oxidative stress in Neisseria gonorrhoeae and Neisseria meningitidis: distinctive systems for different lifestyles. J Infect Dis. 2004, 190: 136-147. 10.1086/421299.
Article
CAS
PubMed
Google Scholar
Chantratita N, Tandhavanant S, Wikraiphat C, Trunck LA, Rholl DA, Thanwisai A, Saiprom N, Limmathurotsakul D, Korbsrisate S, Day NP, et al.: Proteomic analysis of colony morphology variants of Burkholderia pseudomallei defines a role for the arginine deiminase system in bacterial survival. J Proteomics. 2012, 75: 1031-1042. 10.1016/j.jprot.2011.10.015.
Article
PubMed Central
CAS
PubMed
Google Scholar
Suparak S, Kespichayawattana W, Haque A, Easton A, Damnin S, Lertmemongkolchai G, Bancroft GJ, Korbsrisate S: Multinucleated giant cell formation and apoptosis in infected host cells is mediated by Burkholderia pseudomallei type III secretion protein BipB. J Bacteriol. 2005, 187: 6556-6560. 10.1128/JB.187.18.6556-6560.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Vattanaviboon P, Panmanee W, Mongkolsuk S: Induction of peroxide and superoxide protective enzymes and physiological cross-protection against peroxide killing by a superoxide generator in Vibrio harveyi. FEMS Microbiol Lett. 2003, 221: 89-95. 10.1016/S0378-1097(03)00172-1.
Article
CAS
PubMed
Google Scholar