Global Tuberculosis Report: Global Tuberculosis Report. 2012, http://apps.who.int/iris/bitstream/10665/75938/1/9789241564502_eng.pdf,
Google Scholar
Barry CE, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, Schnappinger D, Wilkinson RJ, Young D: The spectrum of latent tuberculosis: rethinking the biology and intervention strategies. Nat Rev Microbiol. 2009, 7: 845-855.
PubMed
CAS
PubMed Central
Google Scholar
Boshoff HIM, Barry CE: Tuberculosis—metabolism and respiration in the absence of growth. Nat Rev Microbiol. 2005, 3: 70-80. 10.1038/nrmicro1065.
Article
PubMed
CAS
Google Scholar
Sharma SK, Mohan A: Multidrug-resistant tuberculosis: a menace that threatens to destabilize tuberculosis control. Chest. 2006, 130: 261-272. 10.1378/chest.130.1.261.
PubMed
CAS
Google Scholar
Kantardjieff K, Rupp B: Structural bioinformatic approaches to the discovery of new antimycobacterial drugs. Curr Pharm Des. 2004, 10: 3195-3211. 10.2174/1381612043383205.
Article
PubMed
CAS
Google Scholar
TB alliance: 2012, http://new.tballiance.org/new/portfolio/html-portfolio-item.php?id=18,
Diacon AH, et al: Early bactericidal activity and pharmacokinetics of pa-824 in smear-positive tuberculosis patients. Antimicrob Agents Chemother. 2010, 54 (8): 3402-3407. 10.1128/AAC.01354-09.
Article
PubMed
CAS
PubMed Central
Google Scholar
Tyagi S, Nuermberger E, Yoshimatsu T, Williams K, Rosenthal I, Lounis N, Bishai W, Grosset J: Bactericidal activity of the nitroimidazopyran pa-824 in a murine model of tuberculosis. Antimicrob Agents Chemother. 2005, 49 (6): 2289-2293. 10.1128/AAC.49.6.2289-2293.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Manjunatha UH, Helena B, Cynthia S, Dowd , Liang Z, Thomas J, Albert , Jason E, Norton , Lacy D, Thomas D, Siew Siew P, Clifton E, Barry : Identification of a nitroimidazo-oxazine-specific protein involved in PA-824 resistance in Mycobacterium tuberculosis. PNAS. 2006, 103 (2): 431-436. 10.1073/pnas.0508392103.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wayne LG, Hayes LG: An in vitro model for sequential study of shiftdown of Mycobacterium tuberculosis through two stages of nonreplicating persistence. Infect Immun. 1996, 64 (6): 2062-2069.
PubMed
CAS
PubMed Central
Google Scholar
Wayne LG: Synchronized replication of Mycobacterium tuberculosis. Infect Immun. 1977, 17: 528-530.
PubMed
CAS
PubMed Central
Google Scholar
Trott O, Olson AJ, AutoDock Vina : Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J Comput Chem. 2010, 31: 455-461.
PubMed
CAS
PubMed Central
Google Scholar
Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006, 22: 195-201. 10.1093/bioinformatics/bti770.
Article
PubMed
CAS
Google Scholar
ACD/ChemSketch Freeware, version 10.00. 2006, Toronto, ON, Canada: Advanced Chemistry Development, Inc, http://www.acdlabs.com,
Schuettelkopf AW, Aalten V: DMF: PRODRG - a tool for high-throughput crystallography of protein-ligand complexes. Acta Cryst. 2004, D60: 1355-1363.
CAS
Google Scholar
Cellitti SE, Shaffer J, Jones DH, Mukherjee T, Gurumurthy M, Bursulaya B, Boshoff HI, Choi I, Nayyar A, Lee YS, Cherian J, Niyomrattanakit P, Dick T, Manjunatha UH, Barry CE, Spraggon G, Geierstanger BH: Structure of Ddn, the deazaflavin-dependent nitroreductase from Mycobacterium tuberculosis involved in bioreductive activation of PA-824. Structure. 2012, 20 (1): 101-112. 10.1016/j.str.2011.11.001.
Article
PubMed
CAS
PubMed Central
Google Scholar
Domagala J: Structure-activity and structure-side-effect relationships for the quinolone antibacterials. J Antimicrob Chemother. Apr, 33 (4): 685-706.
Article
Google Scholar
Molegro molecular viewer – version 2.5.0. http://www.molegro.com/index.php,
Stover : A small-molecule nitroimidazopyran drug candidate for the treatment of tuberculosis. Nature. 2000, 405: 962-966. 10.1038/35016103.
Article
PubMed
CAS
Google Scholar
Lenaerts AJ, Veronica G, Karen S, Marietta , Christine M, Johnson , Diane K, Driscoll , Nicholas M, Tompkins , Jerry D, Rose , Robert C, Reynolds , Ian M, Orme : Preclinical testing of the Nitroimidazopyran PA-824 for activity against Mycobacterium tuberculosis in a series of in vitro and In Vivo models. Antimicrob Agents Chemother. 2005, 49 (6): 2294-2301. 10.1128/AAC.49.6.2294-2301.2005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Pawaria S, Lama A, Raje M, Dikshit KL: Responses of Mycobacterium tuberculosis hemoglobin promoters to in vitro and in vivo growth conditions. Appl Environ Microbiol. 2008, 74: 3512-3522. 10.1128/AEM.02663-07.
Article
PubMed
CAS
PubMed Central
Google Scholar
Couture M, Yeh S, Wittenberg BA, Wittenberg JB, Ouellet Y, Rousseau DL, Guertin M: A cooperative oxygen-binding hemoglobin from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 1999, 96: 11223-11228. 10.1073/pnas.96.20.11223.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ouellet H, Ouellet Y, Richard C, Labarre M, Wittenberg B: Truncated hemoglobin HbN protects Mycobacterium bovis from nitric oxide. Proc Natl Acad Sci U S A. 2002, 99: 5902-5907. 10.1073/pnas.092017799.
Article
PubMed
CAS
PubMed Central
Google Scholar
Scott EE, Gibson QH, Olson JS: Mapping the pathways for O2 entry into and exit from myoglobin. J Biol Chem. 2001, 276: 5177-5188. 10.1074/jbc.M008282200.
Article
PubMed
CAS
Google Scholar
Tan MP, Sequeira P, Lin WW, Phong WY, Cliff P, et al: Nitrate respiration protects hypoxic Mycobacterium tuberculosis against acid- and reactive nitrogen species stresses. PLoS One. 2010, 5 (10): e13356-10.1371/journal.pone.0013356.
Article
PubMed
CAS
PubMed Central
Google Scholar
Milani M, Pesce A, Ouellet Y, Ascenzi P, Guertin M, Bolognesi M: Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme. EMBO J. 2001, 20: 3902-3909. 10.1093/emboj/20.15.3902.
Article
PubMed
CAS
PubMed Central
Google Scholar
Milani M, Pesce A, Ouellet Y, Dewilde S, Friedman J, Ascenzi P, Guertin M, Bolognesi M: Heme-ligand tunneling in group I truncated hemoglobins. J Biol Chem. 2004, 279: 21520-21525. 10.1074/jbc.M401320200.
Article
PubMed
CAS
Google Scholar
Bidon-Chanal A, Martí MA, Crespo A, Milani M, Orozco M, Bolognesi M, Luque FJ, Estrin DA: Ligand-induced dynamical regulation of NO conversion in Mycobacterium tuberculosis truncated hemoglobin-N. Proteins. 2006, 64: 457-464. 10.1002/prot.21004.
Article
PubMed
CAS
Google Scholar
Bidon-Chanal A, Martí MA, Estrin DA, Luque FJ: Dynamical regulation of ligand migration by a gate-opening molecular switch in truncated hemoglobin-N from Mycobacterium tuberculosis. J Am Chem Soc. 2007, 129: 6782-6788. 10.1021/ja0689987.
Article
PubMed
CAS
Google Scholar
Daigle R, Guertin M, Lague P: Structural characterization of the tunnels of Mycobacterium tuberculosis truncated hemoglobin N from molecular dynamics simulations. Proteins: Struct Funct Bioinf. 2009, 75: 735-747. 10.1002/prot.22283.
Article
CAS
Google Scholar
Mishra S, Meuwly M: Nitric oxide dynamics in truncated hemoglobin: docking sites, migration pathways, and vibrational spectroscopy from molecular dynamics simulations. Biophys J. 2009, 96 (6): 2105-2118. 10.1016/j.bpj.2008.11.066.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sarkar S, Viktor I, Korolchuk , Maurizio R, Sara I, Angeleen F, Andrea W, Moises G-A, Claudia R, Shouqing L, Benjamin R, Underwood , Guido K, Cahir J, O’Kane , David C, Rubinsztein : Complex inhibitory effects of nitric oxide on autophagy. Mol Cell. 2011, 43 (1): 19-32. 10.1016/j.molcel.2011.04.029.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ham H, Sreelatha A, Orth K: Manipulation of host membranes by bacterial effectors. Nat Rev Microbiol. 2011, 9: 635-646. 10.1038/nrmicro2602.
Article
PubMed
CAS
Google Scholar
Ahmad Z, Peloquin CA, Singh RP, Derendorf H, Tyagi S, Ginsberg A, Grosset JH, Nuermberger EL: PA-824 exhibits time-dependent activity in a murine model of tuberculosis. Antimicrob Agents Chemother. 2011, 55: 239-245. 10.1128/AAC.00849-10.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhang Y, Mitchison D: The curious characteristics of pyrazinamide: a review. Int J Tuberc Lung Dis. 2003, 7 (1): 6-21.
PubMed
CAS
Google Scholar
Schwartz : Novel conjugate of moxifloxacin and carboxymethylated glucan with enhanced activity against Mycobacterium tuberculosis. Antimicrob Agents Chemother. 2006, 50 (6): 1982-1988. 10.1128/AAC.00362-05.
Article
PubMed
CAS
PubMed Central
Google Scholar
Babincová : Antioxidant properties of carboxymethyl glucan: comparative analysis. J Med Food. 2002, 5 (2): 79-83. 10.1089/109662002760178159.
Article
PubMed
Google Scholar
Wang X, Zhao X, Malik M, Drlica K: Contribution of reactive oxygen species to pathways of quinolone-mediated bacterial cell deat. J Antimicrob Chemother. 2010, 65 (3): 520-524. 10.1093/jac/dkp486.
Article
PubMed
CAS
PubMed Central
Google Scholar
Georgopapadakou NH, Bertasso A: Mechanisms of action of cephalosporin 3′-quinolone esters, carbamates, and tertiary amines in Escherichia coli. Antimicrob Agents Chemother. 1993, 37 (3): 559-565. 10.1128/AAC.37.3.559.
Article
PubMed
CAS
PubMed Central
Google Scholar
Simões MF, Valente E, Gómez MJ, Anes E, Constantino L: Lipophilic pyrazinoic acid amide and ester prodrugs: stability, activation and activity against M. tuberculosis. Eur J Pharm Sci. 2009, 37 (3–4): 257-263.
Article
PubMed
Google Scholar
Piccaro G, Giannoni F, Filippini P, Mustazzolu A, Fattorini L: Activities of drug combinations against mycobacterium tuberculosis grown in aerobic and hypoxic acidic conditions. Antimicrob Agents Chemother. 2013, 57 (3): 1428-1433. 10.1128/AAC.02154-12.
Article
PubMed
CAS
PubMed Central
Google Scholar
Andreas H, Diacon AH, Rodney D, Von Groote-Bidlingmaier F, Gregory S, Amour V, Donald PR: 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet. 2012, 380 (9846): 986-993. 10.1016/S0140-6736(12)61080-0.
Article
Google Scholar