Laliberte J, Carruthers VB: Host cell manipulation by the human pathogen Toxoplasma gondii. Cell Mol Life Sci. 2008, 65: 1900-1915. 10.1007/s00018-008-7556-x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Peng HJ, Chen XG, Lindsay DS: A review: Competence, compromise, and concomitance-reaction of the host cell to Toxoplasma gondii infection and development. J Parasitol. 2011, 97: 620-628. 10.1645/GE-2712.1.
Article
PubMed
Google Scholar
Mordue DG, Hakansson S, Niesman I, Sibley LD: Toxoplasma gondii resides in a vacuole that avoids fusion with host cell endocytic and exocytic vesicular trafficking pathways. Exp Parasitol. 1999, 92: 87-99. 10.1006/expr.1999.4412.
Article
PubMed
CAS
Google Scholar
Charron AJ, Sibley LD: Molecular partitioning during host cell penetration by Toxoplasma gondii. Traffic. 2004, 5: 855-867. 10.1111/j.1600-0854.2004.00228.x.
Article
PubMed
CAS
Google Scholar
Mordue DG, Desai N, Dustin M, Sibley LD: Invasion by Toxoplasma gondii establishes a moving junction that selectively excludes host cell plasma membrane proteins on the basis of their membrane anchoring. J Exp Med. 1999, 190: 1783-1792. 10.1084/jem.190.12.1783.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hakansson S, Charron AJ, Sibley LD: Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J. 2001, 20: 3132-3144. 10.1093/emboj/20.12.3132.
Article
PubMed
CAS
PubMed Central
Google Scholar
Joiner KA, Roos DS: Secretory traffic in the eukaryotic parasite Toxoplasma gondii: less is more. J Cell Biol. 2002, 157: 557-563. 10.1083/jcb.200112144.
Article
PubMed
CAS
PubMed Central
Google Scholar
Straub KW, Cheng SJ, Sohn CS, Bradley PJ: Novel components of the Apicomplexan moving junction reveal conserved and coccidia-restricted elements. Cell Microbiol. 2009, 11: 590-603. 10.1111/j.1462-5822.2008.01276.x.
Article
PubMed
CAS
PubMed Central
Google Scholar
Sibley LD, Charron A, Hakansson S, Mordue D: Invasion and intracellular survival by Toxoplasma gondii. Protozoans in Macrophages. Edited by: Denkers E, Gazzinelli R. 2007, Austin, TX: Landes Bioscience, 16-24.
Google Scholar
Scheffzek K, Ahmadian MR: GTPase activating proteins: structural and functional insights 18 years after discovery. Cell Mol Life Sci. 2005, 62: 3014-3038. 10.1007/s00018-005-5136-x.
Article
PubMed
CAS
Google Scholar
Ghosh A, Uthaiah R, Howard J, Herrmann C, Wolf E: Crystal structure of IIGP1: a paradigm for interferon-inducible p47 resistance GTPases. Mol Cell. 2004, 15: 727-739. 10.1016/j.molcel.2004.07.017.
Article
PubMed
CAS
Google Scholar
Takai Y, Sasaki T, Matozaki T: Small GTP-binding proteins. Physiol Rev. 2001, 81: 153-208.
PubMed
CAS
Google Scholar
Hippenstiel S, Schmeck B, N’Guessan PD, Seybold J, Krüll M, Preissner K, Eichel-Streiber CV, Suttorp N: Rho protein inactivation induced apoptosis of cultured human endothelial cells. Am J Physiol Lung Cell Mol Physiol. 2002, 283: L830-838.
Article
PubMed
CAS
Google Scholar
da Silva CV, da Silva EA, Cruz MC, Chavrier P, Mortara RA: ARF6, PI3-kinase and host cell actin cytoskeleton in Toxoplasma gondii cell invasion. Biochem Biophys Res Commun. 2009, 378: 656-661. 10.1016/j.bbrc.2008.11.108.
Article
PubMed
Google Scholar
Howard JC, Hunn JP, Steinfeldt T: The IRG protein-based resistance mechanism in mice and its relation to virulence in Toxoplasma gondii. Curr Opin Microbiol. 2011, 14: 414-421. 10.1016/j.mib.2011.07.002.
Article
PubMed
CAS
Google Scholar
Papic N, Hunn JP, Pawlowski N, Zerrahn J, Howard JC: Inactive and active states of the interferon-inducible resistance GTPase, Irga6, In Vivo. J Biol Chem. 2008, 283: 32143-32151. 10.1074/jbc.M804846200.
Article
PubMed
CAS
PubMed Central
Google Scholar
Hall A: Rho GTPases and the actin cytoskeleton. Science. 1998, 279: 509-514. 10.1126/science.279.5350.509.
Article
PubMed
CAS
Google Scholar
Maddala R, Reddy VN, Epstein DL, Rao V: Growth factor induced activation of Rho and Rac GTPases and actin cytoskeletal reorganization in human lens epithelial cells. Mol Vis. 2003, 17: 329-36.
Google Scholar
Taylor GA: IRG proteins: key mediators of interferon-regulated host resistance to intracellular pathogens. Cell Microbiol. 2007, 9: 1099-1107. 10.1111/j.1462-5822.2007.00916.x.
Article
PubMed
CAS
Google Scholar
Hunn JP, Koenen-Waisman S, Papic N, Schroeder N, Pawlowski N, Lange R, Kaiser F, Zerrahn J, Martens S, Howard JC: Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii. EMBO J. 2008, 27: 2495-2509. 10.1038/emboj.2008.176.
Article
PubMed
CAS
PubMed Central
Google Scholar
Zhao YO, Khaminets A, Hunn JP, Howard JC: Disruption of the Toxoplasma gondii parasitophorous vacuole by IFN gamma-inducible immunity-related GTPases (IRG proteins) triggers necrotic cell death. PLoS Pathog. 2009, 5: e1000288-10.1371/journal.ppat.1000288.
Article
PubMed
PubMed Central
Google Scholar
Zhao Y, Ferguson DJ, Wilson DC, Howard JC, Sibley LD, Yap GS: Virulent Toxoplasma gondii evade immunity-related GTPase-mediated parasite vacuole disruption within primed macrophages. J Immunol. 2009, 182: 3775-3781. 10.4049/jimmunol.0804190.
Article
PubMed
CAS
PubMed Central
Google Scholar
Fentress SJ, Behnke MS, Dunay IR, Mashayekhi M, Rommereim LM, Fox BA, Bzik DJ, Taylor GA, Turk BE, Lichti CF, Townsend RR, Qiu W, Hui R, Beatty WL, Sibley LD: Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe. 2010, 8: 484-495. 10.1016/j.chom.2010.11.005.
Article
PubMed
CAS
PubMed Central
Google Scholar
Yin J, Lu J, Yu FS: Role of small GTPase Rho in regulating corneal epithelial wound healing. Invest Ophthalmol Vis Sci. 2008, 49: 900-909. 10.1167/iovs.07-1122.
Article
PubMed
PubMed Central
Google Scholar
Dise RS, Frey MR, Whitehead RH, Polk DB: Epidermal growth factor stimulates Rac activation through Src and phosphatidylinositol 3-kinase to promote colonic epithelial cell migration. Am J Physiol Gastrointest Liver Physiol. 2008, 294: G276-285.
Article
PubMed
CAS
Google Scholar
Dvorsky R, Blumenstein L, Vetter IR, Ahmadian MR: Structural insights into the interaction of ROCKI with the switch regions of RhoA. J Biol Chem. 2004, 279: 7098-7104.
Article
PubMed
CAS
Google Scholar
Bishop AL, Hall A: Rho GTPases and their effector proteins. Biochem J. 2000, 348: 241-255. 10.1042/0264-6021:3480241.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ihara K, Muraguchi S, Kato M, Shimizu T, Shirakawa M, Kuroda S, Kaibuchi K, Hakoshima T: Crystal structure of human RhoA in a dominantly active form complexed with a GTP analogue. J Biol Chem. 1998, 273: 9656-9666. 10.1074/jbc.273.16.9656.
Article
PubMed
CAS
Google Scholar
Palazzo AF, Cook TA, Alberts AS, Gundersen GG: mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol. 2001, 8: 723-729.
Article
Google Scholar
Wennerberg K, Rossman KL, Der CJ: The Ras superfamily at a glance. J Cell Sci. 2005, 118: 843-846. 10.1242/jcs.01660.
Article
PubMed
CAS
Google Scholar
Gonzalez V, Combe A, David V, Malmquist NA, Delorme V, Leroy C, Blazquez S, Ménard R, Tardieux I: Host cell entry by apicomplexa parasites requires actin polymerization in the host cell. Cell Host Microbe. 2009, 5: 259-272. 10.1016/j.chom.2009.01.011.
Article
PubMed
CAS
Google Scholar
Walker ME, Hjort EE, Smith SS, Tripathi A, Hornick JE, Hinchcliffe EH, Archer W, Hager KM: Toxoplasma gondii actively remodels the microtubule network in host cells. Microbes Infect. 2008, 10: 1440-1449. 10.1016/j.micinf.2008.08.014.
Article
PubMed
CAS
PubMed Central
Google Scholar
Li L, Li X, Yan J: Alterations of concentrations of calcium and arachidonic acid and agglutinations of microfilaments in host cells during Toxoplasma gondii invasion. Vet Parasitol. 2008, 157: 21-33. 10.1016/j.vetpar.2008.07.007.
Article
PubMed
CAS
Google Scholar
Adam T, Giry M, Boquet P, Sansonetti P: Rho-dependent membrane folding causes Shigella entry into epithelial cells. EMBO J. 1996, 15: 3315-3321.
PubMed
CAS
PubMed Central
Google Scholar
Burnham CA, Shokoples SE, Tyrrell GJ: Rac1, RhoA, and Cdc42 participate in HeLa cell invasion by group B streptococcus. FEMS Microbiol Lett. 2007, 272: 8-14. 10.1111/j.1574-6968.2007.00768.x.
Article
PubMed
CAS
Google Scholar
Fernandes AB, Mortara RA: Invasion of MDCK epithelial cells with altered expression of Rho GTPases by Trypanosoma cruzi amastigotes and metacyclic trypomastigotes of strains from the two major phylogenetic lineages. Microbes Infect. 2004, 6: 460-467. 10.1016/j.micinf.2004.01.009.
Article
PubMed
CAS
Google Scholar
Bonilha VL, De Souza W, Carvalho TM: Role of small GTPases in Trypanosoma cruzi invasion in MDCK cell lines.Dutra JM. Parasitol Res. 2005, 96: 171-177. 10.1007/s00436-005-1333-7.
Article
PubMed
Google Scholar
Atre AN, Surve SV, Shouche YS, Joseph J, Patole MS, Deopurkar RL: Association of small Rho GTPases and actin ring formation in epithelial cells during the invasion by Candida albicans. FEMS Immunol Med Microbiol. 2009, 55: 74-84. 10.1111/j.1574-695X.2008.00504.x.
Article
PubMed
CAS
Google Scholar
Kraus S, Benard O, Naor Z, Seger R: c-Src is activated by the epidermal growth factor receptor in a pathway that mediates JNK and ERK activation by gonadotropin-releasing hormone in COS7 cells. J Biol Chem. 2003, 35: 32618-32630.
Article
Google Scholar
Cowan CW, Shao YR, Sahin M, Shamah SM, Lin MZ, Greer PL, Gao S, Griffith EC, Brugge JS, Greenberg ME: Vav family GEFs link activated Ephs to endocytosis and axon guidance. Neuron. 2005, 2: 205-217.
Article
Google Scholar
Tanaka M, Ohashi R, Nakamura R, Shinmura K, Kamo T, Sakai R, Sugimura H: Tiam1 mediates neurite outgrowth induced by ephrin-B1 and EphA2. EMBO J. 2004, 5: 1075-1088.
Article
Google Scholar
Knoll B, Drescher U: Src family kinases are involved in EphA receptor-mediated retinal axon guidance. J Neurosci. 2004, 28: 6248-6257.
Article
Google Scholar
Sahin M, Greer PL, Lin MZ, Poucher H, Eberhart J, Schmidt S, Wright TM, Shamah SM, O’connell S, Cowan CW, Hu L, Goldberg JL, Debant A, Corfas G, Krull CE, Greenberg ME: Eph-dependent tyrosine phosphorylation of ephexin1 modulates growth cone collapse. Neuron. 2005, 2: 191-204.
Article
Google Scholar
Sumi T, Matsumoto K, Nakamura T: Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J Biol Chem. 2001, 1: 670-676.
Article
Google Scholar
Arimura N, Inagaki N, Chihara K, Menager C, Nakamura N, Amano M, Iwamatsu A, Goshima Y, Kaibuchi K: Phosphorylation of collapsin response mediator protein-2 by Rho-kinase. Evidence for two separate signaling pathways for growth cone collapse. J Biol Chem. 2000, 31: 23973-23980.
Article
Google Scholar
Fukata Y, Itoh TJ, Kimura T, Menager C, Nishimura T, Shiromizu T, Watanabe H, Inagaki N, Iwamatsu A, Hotani H, Kaibuchi K: CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nat Cell Biol. 2002, 8: 583-591.
Google Scholar
Liu BP, Burridge K: Vav2 activates Rac1, Cdc42, and RhoA downstream from growth factor receptors but not β1 integrins. Mol Cell Biol. 2000, 20: 7160-7169. 10.1128/MCB.20.19.7160-7169.2000.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wilson JG: Reproduction and teratogenesis: current methods and suggested improvements. J Assoc Off Anal Chem. 1975, 4: 657-667.
Google Scholar
Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S: Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science. 1999, 5429: 895-898.
Article
Google Scholar
Dayel MJ, Mullins RD: Activation of Arp2/3 complex: addition of the first subunit of the new filament by a WASP protein triggers rapid ATP hydrolysis on Arp2. PLoS Biol. 2004, 4: E91-
Article
Google Scholar
Fan L, Di Ciano-Oliveira C, Weed SA, Craig AW, Greer PA, Rotstein OD, Kapus A: Actin depolymerization-induced tyrosine phosphorylation of cortactin: the role of Fer kinase. Biochem J. 2004, 2: 581-591.
Article
Google Scholar