Brun YV, Marczynski G, Shapiro L: The expression of asymmetry during Caulobacter cell differentiation. Annu Rev Biochem. 1994, 63: 419-450. 10.1146/annurev.bi.63.070194.002223.
Article
PubMed
CAS
Google Scholar
Gober JW, England J: Regulation of flagellum biosynthesis and motility in Caulobacter Prokaryotic Development. Edited by: Brun KV, Shimkets LJ. 2000, Washington, DC: American Society for Microbiology, 319-339.
Google Scholar
Gober JW, Marques MV: Regulation of cellular differentiation in Caulobacter crescentus. Microbiol Rev. 1995, 59 (1): 31-47.
PubMed
CAS
PubMed Central
Google Scholar
Wu J, Newton A: Regulation of the Caulobacter flagellar gene hierarchy; not just for motility. Mol Microbiol. 1997, 24 (2): 233-239. 10.1046/j.1365-2958.1997.3281691.x.
Article
PubMed
CAS
Google Scholar
England JC, Gober JW: Cell cycle control of cell morphogenesis in Caulobacter. Curr Opin Microbiol. 2001, 4 (6): 674-680. 10.1016/S1369-5274(01)00268-5.
Article
PubMed
CAS
Google Scholar
Bryan R, Purucker M, Gomes SL, Alexander W, Shapiro L: Analysis of the pleiotropic regulation of flagellar and chemotaxis gene expression in Caulobacter crescentus by using plasmid complementation. Proc Natl Acad Sci USA. 1984, 81 (5): 1341-1345. 10.1073/pnas.81.5.1341.
Article
PubMed
CAS
PubMed Central
Google Scholar
Champer R, Dingwall A, Shapiro L: Cascade regulation of Caulobacter flagellar and chemotaxis genes. J Mol Biol. 1987, 194 (1): 71-80. 10.1016/0022-2836(87)90716-9.
Article
PubMed
CAS
Google Scholar
Mangan EK, Bartamian M, Gober JW: A mutation that uncouples flagellum assembly from transcription alters the temporal pattern of flagellar gene expression in Caulobacter crescentus. J Bacteriol. 1995, 177 (11): 3176-3184.
PubMed
CAS
PubMed Central
Google Scholar
Minnich SA, Newton A: Promoter mapping and cell cycle regulation of flagellin gene transcription in Caulobacter crescentus. Proc Natl Acad Sci USA. 1987, 84 (5): 1142-1146. 10.1073/pnas.84.5.1142.
Article
PubMed
CAS
PubMed Central
Google Scholar
Newton A, Ohta N, Ramakrishnan G, Mullin D, Raymond G: Genetic switching in the flagellar gene hierarchy of Caulobacter requires negative as well as positive regulation of transcription. Proc Natl Acad Sci USA. 1989, 86 (17): 6651-6655. 10.1073/pnas.86.17.6651.
Article
PubMed
CAS
PubMed Central
Google Scholar
Ohta N, Chen LS, Mullin DA, Newton A: Timing of flagellar gene expression in the Caulobacter cell cycle is determined by a transcriptional cascade of positive regulatory genes. J Bacteriol. 1991, 173 (4): 1514-1522.
PubMed
CAS
PubMed Central
Google Scholar
Ohta N, Chen LS, Swanson E, Newton A: Transcriptional regulation of a periodically controlled flagellar gene operon in Caulobacter crescentus. J Mol Biol. 1985, 186 (1): 107-115. 10.1016/0022-2836(85)90261-X.
Article
PubMed
CAS
Google Scholar
Ramakrishnan G, Zhao JL, Newton A: Multiple structural proteins are required for both transcriptional activation and negative autoregulation of Caulobacter crescentus flagellar genes. J Bacteriol. 1994, 176 (24): 7587-7600.
PubMed
CAS
PubMed Central
Google Scholar
Xu H, Dingwall A, Shapiro L: Negative transcriptional regulation in the Caulobacter flagellar hierarchy. Proc Natl Acad Sci USA. 1989, 86 (17): 6656-6660. 10.1073/pnas.86.17.6656.
Article
PubMed
CAS
PubMed Central
Google Scholar
Curtis PD, Brun YV: Getting in the loop: regulation of development in Caulobacter crescentus. Microbiol Mol Biol Rev. 2010, 74 (1): 13-41. 10.1128/MMBR.00040-09.
Article
PubMed
CAS
PubMed Central
Google Scholar
Quon KC, Marczynski GT, Shapiro L: Cell cycle control by an essential bacterial two-component signal transduction protein. Cell. 1996, 84 (1): 83-93. 10.1016/S0092-8674(00)80995-2.
Article
PubMed
CAS
Google Scholar
Reisenauer A, Quon K, Shapiro L: The CtrA response regulator mediates temporal control of gene expression during the Caulobacter cell cycle. J Bacteriol. 1999, 181 (8): 2430-2439.
PubMed
CAS
PubMed Central
Google Scholar
Domian IJ, Quon KC, Shapiro L: Cell type-specific phosphorylation and proteolysis of a transcriptional regulator controls the G1-to-S transition in a bacterial cell cycle. Cell. 1997, 90 (3): 415-424. 10.1016/S0092-8674(00)80502-4.
Article
PubMed
CAS
Google Scholar
Anderson DK, Newton A: Posttranscriptional regulation of Caulobacter flagellin genes by a late flagellum assembly checkpoint. J Bacteriol. 1997, 179 (7): 2281-2288.
PubMed
CAS
PubMed Central
Google Scholar
Anderson PE, Gober JW: FlbT, the post-transcriptional regulator of flagellin synthesis in Caulobacter crescentus, interacts with the 5' untranslated region of flagellin mRNA. Mol Microbiol. 2000, 38 (1): 41-52. 10.1046/j.1365-2958.2000.02108.x.
Article
PubMed
CAS
Google Scholar
Mangan EK, Malakooti J, Caballero A, Anderson P, Ely B, Gober JW: FlbT couples flagellum assembly to gene expression in Caulobacter crescentus. J Bacteriol. 1999, 181 (19): 6160-6170.
PubMed
CAS
PubMed Central
Google Scholar
Llewellyn M, Dutton RJ, Easter J, O'Donnol D, Gober JW: The conserved flaF gene has a critical role in coupling flagellin translation and assembly in Caulobacter crescentus. Mol Microbiol. 2005, 57 (4): 1127-1142. 10.1111/j.1365-2958.2005.04745.x.
Article
PubMed
CAS
Google Scholar
Mullin D, Minnich S, Chen LS, Newton A: A set of positively regulated flagellar gene promoters in Caulobacter crescentus with sequence homology to the nif gene promoters of Klebsiella pneumoniae. Journal of molecular biology. 1987, 195 (4): 939-943. 10.1016/0022-2836(87)90497-9.
Article
PubMed
CAS
Google Scholar
Gober JW, Shapiro L: Integration host factor is required for the activation of developmentally regulated genes in Caulobacter. Genes Dev. 1990, 4 (9): 1494-1504. 10.1101/gad.4.9.1494.
Article
PubMed
CAS
Google Scholar
Gober JW, Shapiro L: A developmentally regulated Caulobacter flagellar promoter is activated by 3' enhancer and IHF binding elements. Mol Biol Cell. 1992, 3 (8): 913-926.
Article
PubMed
CAS
PubMed Central
Google Scholar
Mullin DA, Newton A: Ntr-like promoters and upstream regulatory sequence ftr are required for transcription of a developmentally regulated Caulobacter crescentus flagellar gene. Journal of bacteriology. 1989, 171 (6): 3218-3227.
PubMed
CAS
PubMed Central
Google Scholar
Mullin DA, Newton A: A sigma 54 promoter and downstream sequence elements ftr2 and ftr3 are required for regulated expression of divergent transcription units flaN and flbG in Caulobacter crescentus. Journal of bacteriology. 1993, 175 (7): 2067-2076.
PubMed
CAS
PubMed Central
Google Scholar
Gober JW, Xu H, Dingwall AK, Shapiro L: Identification of cis and trans-elements involved in the timed control of a Caulobacter flagellar gene. Journal of molecular biology. 1991, 217 (2): 247-257. 10.1016/0022-2836(91)90539-I.
Article
PubMed
CAS
Google Scholar
Benson AK, Ramakrishnan G, Ohta N, Feng J, Ninfa AJ, Newton A: The Caulobacter crescentus FlbD protein acts at ftr sequence elements both to activate and to repress transcription of cell cycle-regulated flagellar genes. Proc Natl Acad Sci USA. 1994, 91 (11): 4989-4993. 10.1073/pnas.91.11.4989.
Article
PubMed
CAS
PubMed Central
Google Scholar
Benson AK, Wu J, Newton A: The role of FlbD in regulation of flagellar gene transcription in Caulobacter crescentus. Res Microbiol. 1994, 145 (5-6): 420-430. 10.1016/0923-2508(94)90090-6.
Article
PubMed
CAS
Google Scholar
Mullin DA, Van Way SM, Blankenship CA, Mullin AH: FlbD has a DNA-binding activity near its carboxy terminus that recognizes ftr sequences involved in positive and negative regulation of flagellar gene transcription in Caulobacter crescentus. J Bacteriol. 1994, 176 (19): 5971-5981.
PubMed
CAS
PubMed Central
Google Scholar
Ramakrishnan G, Newton A: FlbD of Caulobacter crescentus is a homologue of the NtrC (NRI) protein and activates sigma 54-dependent flagellar gene promoters. Proc Natl Acad Sci USA. 1990, 87 (6): 2369-2373. 10.1073/pnas.87.6.2369.
Article
PubMed
CAS
PubMed Central
Google Scholar
Wingrove JA, Mangan EK, Gober JW: Spatial and temporal phosphorylation of a transcriptional activator regulates pole-specific gene expression in Caulobacter. Genes Dev. 1993, 7 (10): 1979-1992. 10.1101/gad.7.10.1979.
Article
PubMed
CAS
Google Scholar
Wu J, Benson AK, Newton A: Global regulation of a sigma 54-dependent flagellar gene family in Caulobacter crescentus by the transcriptional activator FlbD. J Bacteriol. 1995, 177 (11): 3241-3250.
PubMed
CAS
PubMed Central
Google Scholar
Dutton RJ, Xu Z, Gober JW: Linking structural assembly to gene expression: a novel mechanism for regulating the activity of a sigma54 transcription factor. Mol Microbiol. 2005, 58 (3): 743-757. 10.1111/j.1365-2958.2005.04857.x.
Article
PubMed
CAS
Google Scholar
Muir RE, Gober JW: Mutations in FlbD that relieve the dependency on flagellum assembly alter the temporal and spatial pattern of developmental transcription in Caulobacter crescentus. Mol Microbiol. 2002, 43 (3): 597-615. 10.1046/j.1365-2958.2002.02728.x.
Article
PubMed
CAS
Google Scholar
Muir RE, Gober JW: Regulation of FlbD activity by flagellum assembly is accomplished through direct interaction with the trans-acting factor, FliX. Mol Microbiol. 2004, 54 (3): 715-730. 10.1111/j.1365-2958.2004.04298.x.
Article
PubMed
CAS
Google Scholar
Muir RE, O'Brien TM, Gober JW: The Caulobacter crescentus flagellar gene, fliX, encodes a novel trans-acting factor that couples flagellar assembly to transcription. Mol Microbiol. 2001, 39 (6): 1623-1637. 10.1046/j.1365-2958.2001.02351.x.
Article
PubMed
CAS
Google Scholar
Poindexter JS: Biological Properties and Classification of the Caulobacter Group. Bacteriol Rev. 1964, 28: 231-295.
PubMed
CAS
PubMed Central
Google Scholar
Miller JH: A short course in bacterial genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY. 1992
Google Scholar
Ohta N, Swanson E, Ely B, Newton A: Physical mapping and complementation analysis of transposon Tn5 mutations in Caulobacter crescentus: organization of transcriptional units in the hook gene cluster. J Bacteriol. 1984, 158 (3): 897-904.
PubMed
CAS
PubMed Central
Google Scholar
Gu B, Lee JH, Hoover TR, Scholl D, Nixon BT: Rhizobium meliloti DctD, a sigma 54-dependent transcriptional activator, may be negatively controlled by a subdomain in the C-terminal end of its two-component receiver module. Mol Microbiol. 1994, 13 (1): 51-66. 10.1111/j.1365-2958.1994.tb00401.x.
Article
PubMed
CAS
Google Scholar
Lee SY, De La Torre A, Yan D, Kustu S, Nixon BT, Wemmer DE: Regulation of the transcriptional activator NtrC1: structural studies of the regulatory and AAA+ ATPase domains. Genes Dev. 2003, 17 (20): 2552-2563. 10.1101/gad.1125603.
Article
PubMed
CAS
PubMed Central
Google Scholar
Volz K: Structural conservation in the CheY superfamily. Biochemistry. 1993, 32 (44): 11741-11753. 10.1021/bi00095a001.
Article
PubMed
CAS
Google Scholar
Stephens C, Mohr C, Boyd C, Maddock J, Gober J, Shapiro L: Identification of the fliI and fliJ components of the Caulobacter flagellar type III protein secretion system. J Bacteriol. 1997, 179 (17): 5355-5365.
PubMed
CAS
PubMed Central
Google Scholar
Simon R, Priefer U, Puhler A: A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria. Nat Biotech. 1983, 1 (9): 784-791. 10.1038/nbt1183-784.
Article
CAS
Google Scholar
Kovach ME, Phillips RW, Elzer PH, Roop RM, Peterson KM: pBBR1MCS: a broad-host-range cloning vector. Biotechniques. 1994, 16 (5): 800-802.
PubMed
CAS
Google Scholar
Wingrove JA, Gober JW: A sigma 54 transcriptional activator also functions as a pole-specific repressor in Caulobacter. Genes & development. 1994, 8 (15): 1839-1852. 10.1101/gad.8.15.1839.
Article
CAS
Google Scholar