Charnley AK, Collins SA: Entomopathogenic fungi and their role in pest control. Mycota: Environmental and Microbial Relationships. 2007, 4: 159-187. full_text.
Article
Google Scholar
Lomer C, Bateman R, Johnson D, Langewald J, Thomas M: Biological control of locusts and grasshoppers. Annu Rev Entomol. 2001, 46: 667-702. 10.1146/annurev.ento.46.1.667.
Article
PubMed
CAS
Google Scholar
Peng G, Wang Z, Yin Y, Zeng D, Xia Y: Field trials of Metarhizium anisopliae var. acridum (Ascomycota: Hypocreales) against oriental migratory locusts, Locusta migratoria manilensis (Meyen) in Northern China. Crop Prot. 2008, 27: 1244-1250. 10.1016/j.cropro.2008.03.007.
Article
Google Scholar
Daoust RA, Roberts DW: Studies on the prolonged storage of Metarhizium anisopliae conidia: Effect of temperature and relative humidity on conidial viability and virulence against mosquitoes. J Invertebr Pathol. 1982, 41: 143-150. 10.1016/0022-2011(83)90213-6.
Article
Google Scholar
Ekesi S, Maniania NK, Lux SA: Effect of soil temperature and moisture on survival and infectivity of Metarhizium anisopliae to four tephritid fruit fly puparia. J Invertebr Pathol. 2003, 83: 157-167. 10.1016/S0022-2011(03)00069-7.
Article
PubMed
CAS
Google Scholar
Rangela DEN, Braga GUL, Flintc SD, Andersona AJ, Roberts DW: Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates. J Invertebr Pathol. 2004, 87: 77-83. 10.1016/j.jip.2004.06.007.
Article
Google Scholar
Hallsworth JE, Magan N: Effect of carbohydrate type and concentration on polyhydroxy alcohol and trehalose content of conidia of three entomopathogenic fungi. Microbiology. 1994, 140: 2705-2713. 10.1099/00221287-140-10-2705.
Article
CAS
Google Scholar
Hallsworth JE, Magan N: Manipulation of intracellular glycerol and erythritol enhances germination of conidia at low water availability. Microbiology. 1995, 141: 1109-1115. 10.1099/13500872-141-5-1109.
Article
PubMed
CAS
Google Scholar
Elbein A: The metabolism of alpha, alpha-trehalose. Adv Carbohydr Chem Biochem. 1973, 30: 227-256. 10.1016/S0065-2318(08)60266-8.
Article
Google Scholar
Thevelein JM: Regulation of trehalose metabolism and its relevance to cell growth and function. The Mycota, Biochemistry and Molecular Biology. Edited by: Brambl R, Marzluf GA. 1996, Springe, 3: 395-420.
Chapter
Google Scholar
Nwaka S, Holze H: Molecular biology of trehalose and the trehalases in the yeast Saccharomyces cerevisiae. Prog Nucleic Acid Res Mol Biol. 1998, 58: 197-237. full_text.
Article
PubMed
CAS
Google Scholar
Virgilio CD, Hottiger T, Dominguez J, Boller T, Wiemken A: The role of trehalose synthesis for the acquisition of thermotolerance in yeast. I. Genetic evidence that trehalose is a thermoprotectant. Eur J Biochem. 1994, 219: 179-186. 10.1111/j.1432-1033.1994.tb19928.x.
Article
PubMed
Google Scholar
Hottiger T, Virgilio CD, Hall MN, Boller T, Wiemken A: The role of trehalose synthesis for the acquisition of thermotolerance in yeast 11. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem. 1994, 219: 187-193. 10.1111/j.1432-1033.1994.tb19929.x.
Article
PubMed
CAS
Google Scholar
Laere AV: Trehalose, reserve and/or stress metabolite?. FEMS Microbiol Rev. 1988, 63: 201-210.
Article
Google Scholar
Wiemken A: Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek. 1990, 58: 209-217. 10.1007/BF00548935.
Article
PubMed
CAS
Google Scholar
Attfield PV: Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS lett. 1987, 225: 259-263. 10.1016/0014-5793(87)81170-5.
Article
PubMed
CAS
Google Scholar
Gélinas P, Fiset G, Leduy A, Goulet J: Effect of growth conditions and trehalose content on cryotolerance of bakers' yeast in frozen doughs. Appl Environ Microbiol. 1989, 55: 2453-2459.
PubMed
PubMed Central
Google Scholar
Hottiger T, Boller T, Wiemken A: Rapid changes of heat and desiccation tolerance correlated with changes of trehalose content in Saccharomyces cerevisiae cells subjected to temperature shifts. FEBS lett. 1987, 220: 113-115. 10.1016/0014-5793(87)80886-4.
Article
PubMed
CAS
Google Scholar
Bonini BM, Neves MJ, Jorge JA, Terenzi HF: Effects of temperature shifts on the metabolism of trehalose in Neurospora crassa wild type and a trehalase-deficient (tre) mutant. Evidence against the participation of periplasmic trehalase in the catabolism of intracellular trehalose. Biochim Biophys Acta. 1995, 1245: 339-347.
Article
PubMed
Google Scholar
Doehlemann G, Berndt P, Hahn M: Trehalose metabolism is important for heat stress tolerance and spore germination of Botrytis cinerea. Microbiology. 2006, 152: 2625-2634. 10.1099/mic.0.29044-0.
Article
PubMed
CAS
Google Scholar
D'enfert C, Bonini BM, Zapella PDA, Fontaine T: Neutral trehalases catalyse intracellular trehalose breakdown in the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mol microbiol. 1999, 32: 471-483.
Article
PubMed
Google Scholar
Nwaka S, Kopp M, Burgert M, Deuchler I, Kienle I, Holzer H: Is thermotolerance of yeast dependent on trehalose accumulation?. FEBS lett. 1994, 344: 225-228. 10.1016/0014-5793(94)00385-8.
Article
PubMed
CAS
Google Scholar
Nwaka S, Mechler B, Destruelle M, Holzer H: Phenotypic features of trehalase mutants in Saccharomyces cerevisiae. FEBS Lett. 1995, 360: 286-290. 10.1016/0014-5793(95)00105-I.
Article
PubMed
CAS
Google Scholar
Jorgea JA, Lourdes MD, Polizeli TM, Thevelein JM, Terenzi HF: Trehalases and trehalose hydrolysis in fungi. FEBS lett. 1997, 154: 165-71.
Google Scholar
Schick I, Haltrich D, Kulbe KD: Trehalose phosphorylase from Pichia fermentans and its role in the metabolism of trehalose. Appl Microbiol Biotechnol. 1995, 43: 1088-1095. 10.1007/BF00166930.
Article
CAS
Google Scholar
Thevelein JM: Regulation of Trehalose mobilization in fungi. Microbiol Rev. 1984, 48: 42-59.
PubMed
CAS
PubMed Central
Google Scholar
Thevelein J: Regulation of trehalase activity by phosphorylation dephosphorylation during developmental transitions in fungi. Exp Mycol. 1988, 12: 1-12. 10.1016/0147-5975(88)90011-4.
Article
CAS
Google Scholar
Foster JA, Jenkinson JM, albot NJ: Trehalose synthesis and metabolism are required at different stages of plant infection by Magnaporthe grisea. EMBO J. 2003, 22: 225-235. 10.1093/emboj/cdg018.
Article
PubMed
CAS
PubMed Central
Google Scholar
Xia Y, Clarkson JM, Charnley AK: Trehalose-hydrolysing enzymes of Metarhizium anisopliae and their role in pathogenesis of the tobacco hornworm, Manduca sexta. J Invertebr Pathol. 2002, 80: 139-147. 10.1016/S0022-2011(02)00105-2.
Article
PubMed
CAS
Google Scholar
Xia Y, Gao M, Clarkson J, Charnley AK: Molecular cloning, characterization, and expression of a neutral trehalase from the insect pathogenic fungus Metarhizium anisopliae. J Invertebr Pathol. 2002, 80: 127-137. 10.1016/S0022-2011(02)00124-6.
Article
PubMed
CAS
Google Scholar
Hu Z, Wang Z, Peng G, Yin Y, Xia Y: Cloning and characterization of the neutral trehalase gene in Metarhizium anisopliae CQMa102. Acta Microbiologica Sinica. 2005, 45: 890-894.
PubMed
CAS
Google Scholar
Petzold EW, Himmelreich U, Mylonakis E, Rude T, Toffaletti D, Cox GM, Miller JL, Perfect JR: Characterization and regulation of the trehalose synthesis pathway and its importance in the virulence of Cryptococcus neoformans. Infect Immun. 2006, 74: 5877-5887. 10.1128/IAI.00624-06.
Article
PubMed
CAS
PubMed Central
Google Scholar
Bundey S, Raymond S, Dean P, Roberts SK, Dillon RJ, Charnley AK: Eicosanoid involvement in the regulation of behavioral fever in the desert locust, Schistocerca gregaria. Arch Insect Biochem Physiol. 2003, 52: 183-192. 10.1002/arch.10081.
Article
PubMed
CAS
Google Scholar
Nwaka S, Kopp M, Holzer H: Expression and function of the trehalase genes NTH1 and YBR0106 in Saccharomyces cerevisiae. J Bio Chem. 1995, 270: 10193-10198. 10.1074/jbc.270.17.10193.
Article
CAS
Google Scholar
Symmon P: Strategies to combat the desert locust. Crop Prot. 1992, 11: 25-28.
Google Scholar
Bateman R: Methods of application of microbial pesticide formulations for the control of grasshoppers and locusts. Mem Entomol Soc Canada. 1997, 171: 69-81.
Article
Google Scholar
Liu H, Cottrell TR, Pierini LM, Goldman WE, Doering TM: RNA interference in the pathogenic fungus Cryptococcus neoformans. Genetics. 2002, 160: 463-470.
PubMed
CAS
PubMed Central
Google Scholar
Kadotani N, Nakayashiki H, Tosa Y, Mayama S: RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact. 2003, 16: 769-775. 10.1094/MPMI.2003.16.9.769.
Article
PubMed
CAS
Google Scholar
Fitzgerald A, Kan JA, Plummer KM: Simultaneous silencing of multiple genes in the apple scab fungus, Venturia inaequalis, by expression of RNA with chimeric inverted repeats. Fungal Genet Biol. 2004, 41: 963-971. 10.1016/j.fgb.2004.06.006.
Article
PubMed
CAS
Google Scholar
Mouyna I, Henry C, Doering TL, Latge JP: Gene silencing with RNA interference in the human pathogenic fungus Aspergillus fumigatus. FEMS Microbiol Lett. 2004, 237: 317-324.
PubMed
CAS
Google Scholar
Rappleye CA, Engle JT, Goldman WE: RNA interference in Histoplasma capsulatum demonstrates a roles for a-(1,3)-glucan in virulence. Mol Microbiol. 2004, 53: 153-165. 10.1111/j.1365-2958.2004.04131.x.
Article
PubMed
CAS
Google Scholar
McDonald T, Brown D, Keller NP, Hammond TM: RNA silencing of mycotoxin production in Aspergillus and Fusarium species. Mol Plant Microbe Interact. 2005, 18: 539-545. 10.1094/MPMI-18-0539.
Article
PubMed
CAS
Google Scholar
Tanguay P, Bozza S, Breuil C: Assessing RNAi frequency and efficiency in Ophiostoma floccosum and O. piceae. Fungal Genet Biol. 2006, 43: 804-812. 10.1016/j.fgb.2006.06.004.
Article
PubMed
CAS
Google Scholar
Cao Y, Peng G, He Z, Wang Z, Yin Y, Xia Y: Transformation of Metarhizium anisopliae with benomyl resistance and green fluorescent protein genes provides a tag for genetically engineered strains. Biotechnol Lett. 2007, 29: 907-911. 10.1007/s10529-007-9332-7.
Article
PubMed
CAS
Google Scholar
St Leger RJ, Shimizu S, Joshi L, Biodochka MJ, Roberts DW: Co-transformation of Metarhizium anisopliae by electroporation or using the gene gun to produce stable GUS transformants. FEMS Microbiol Lett. 1995, 131: 289-29. 10.1111/j.1574-6968.1995.tb07789.x.
Article
CAS
Google Scholar
Goettel MS, Leger RJS, Bhairi S, Jung MK, Oakley BR, Roberts DW, Staples RC: Virulence and growth of Metarhizium anisopliae stably transformed to benomyl resistance. Curr Genet. 1990, 17: 129-132. 10.1007/BF00312857.
Article
CAS
Google Scholar
Peng GX, Xie L, Hu J, Xia YX: Identification of genes that are preferentially expressed in conidiogenous cell development of Metarhizium anisopliae by suppression subtractive hybridization. Curr Genet. 2009, 55: 263-271. 10.1007/s00294-009-0242-1.
Article
PubMed
CAS
Google Scholar
Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-delta Delta C(T)) method. Methods. 2001, 25: 402-408. 10.1006/meth.2001.1262.
Article
PubMed
CAS
Google Scholar
Tang QY, Feng MG: DPS Data Processing System for Practical Analysis. 2002, Science Press, Beijing
Google Scholar
He ZB, Cao YQ, Yin YP, Wang ZK, Chen B, Peng GX, Xia YX: Role of hunchback in segment patterning of Locusta migratoria manilensis revealed by parental RNAi. Dev Growth Differ. 2006, 48: 439-445. 10.1111/j.1440-169X.2006.00881.x.
Article
PubMed
CAS
Google Scholar