Fraser DW, Tsai TR, Orenstein W, Parkin WE, Beecham HJ, Sharrar RG, Harris J, Mallison GF, Martin SM, McDade JE, Shepard CC, Brachman PS: Legionnaires' disease: description of an epidemic of pneumonia. N Engl J Med. 1977, 297: 1189-1197.
Article
CAS
PubMed
Google Scholar
Kaufmann AF, McDade JE, Patton CM, Bennett JV, Skaliy P, Feeley JC, Anderson DC, Potter ME, Newhouse VF, Gregg MB, Brachman PS: Pontiac fever: isolation of the etiologic agent (Legionella pneumophilia) and demonstration of its mode of transmission. Am J Epidemiol. 1981, 114: 337-347.
CAS
PubMed
Google Scholar
Andrews HL, Vogel JP, Isberg RR: Identification of linked Legionella pneumophila genes essential for intracellular growth and evasion of the endocytic pathway. Infect Immun. 1998, 66: 950-958.
PubMed Central
CAS
PubMed
Google Scholar
Brand BC, Sadosky AB, Shuman HA: The Legionella pneumophila icm locus: a set of genes required for intracellular multiplication in human macrophages. Mol Microbiol. 1994, 14: 797-808. 10.1111/j.1365-2958.1994.tb01316.x.
Article
CAS
PubMed
Google Scholar
Ninio S, Zuckman-Cholon DM, Cambronne ED, Roy CR: The Legionella IcmS-IcmW protein complex is important for Dot/Icm-mediated protein translocation. Mol Microbiol. 2005, 55: 912-926. 10.1111/j.1365-2958.2004.04435.x.
Article
CAS
PubMed
Google Scholar
Segal G, Feldman M, Zusman T: The Icm/Dot type-IV secretion systems of Legionella pneumophila and Coxiella burnetii. FEMS Microbiol Rev. 2005, 29: 65-81. 10.1016/j.femsre.2004.07.001.
Article
CAS
PubMed
Google Scholar
Chen J, de-Felipe KS, Clarke M, Lu H, Anderson OR, Segal G, Shuman HA: Legionella effectors that promote nonlytic release from protozoa. Science. 2004, 303: 1358-1361. 10.1126/science.1094226.
Article
CAS
PubMed
Google Scholar
Luo ZQ, Isberg RR: Multiple substrates of the Legionella pneumophila Dot/Icm system identified by interbacterial protein transfer. Proc Natl Acad Sci USA. 2004, 101: 841-846. 10.1073/pnas.0304916101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ninio S, Roy CR: Effector proteins translocated by Legionella pneumophila : strength in numbers. Trends Microbiol. 2007, 15: 372-380. 10.1016/j.tim.2007.06.006.
Article
CAS
PubMed
Google Scholar
Hammer BK, Tateda ES, Swanson MS: A two-component regulator induces the transmission phenotype of stationary-phase Legionella pneumophila . Mol Microbiol. 2002, 44: 107-118. 10.1046/j.1365-2958.2002.02884.x.
Article
CAS
PubMed
Google Scholar
Molofsky AB, Swanson MS: Differentiate to thrive: lessons from the Legionella pneumophila life cycle. Mol Microbiol. 2004, 53: 29-40. 10.1111/j.1365-2958.2004.04129.x.
Article
CAS
PubMed
Google Scholar
Hales LM, Shuman HA: The Legionella pneumophila rpoS gene is required for growth within Acanthamoeba castellanii. J Bacteriol. 1999, 181: 4879-89.
PubMed Central
CAS
PubMed
Google Scholar
Tiaden A, Spirig T, Weber SS, Brüggemann H, Bosshard R, Buchrieser C, Hilbi H: The Legionella pneumophila response regulator LqsR promotes host cell interactions as an element of the virulence regulatory network controlled by RpoS and LetA. Cell Microbiol. 2007, 9: 2903-2920. 10.1111/j.1462-5822.2007.01005.x.
Article
CAS
PubMed
Google Scholar
Garduño RA, Quinn FD, Hoffman PS: HeLa cells as a model to study the invasiveness and biology of Legionella pneumophila. Can J Microbiol. 1998, 44: 430-440. 10.1139/cjm-44-5-430.
Article
PubMed
Google Scholar
Garduño RA, Garduño E, Hiltz M, Hoffman PS: Intracellular growth of Legionella pneumophila gives rise to a differentiated form dissimilar to stationary-phase forms. Infect Immun. 2002, 70: 6273-6283. 10.1128/IAI.70.11.6273-6283.2002.
Article
PubMed Central
PubMed
Google Scholar
Brüggemann H, Hagman A, Jules M, Sismeiro O, Dillies MA, Gouyette C, Kunst F, Steinert M, Heuner K, Coppée JY, Buchrieser C: Virulence strategies for infecting phagocytes deduced from the in vivo transcriptional program of Legionella pneumophila. Cell Microbiol. 2006, 8: 1228-1240. 10.1111/j.1462-5822.2006.00703.x.
Article
PubMed
Google Scholar
Bachman MA, Swanson MS: RpoS co-operates with other factors to induce Legionella pneumophila virulence in the stationary phase. Mol Microbiol. 2001, 40: 1201-1214. 10.1046/j.1365-2958.2001.02465.x.
Article
CAS
PubMed
Google Scholar
Bachman MA, Swanson MS: The LetE protein enhances expression of multiple LetA/LetS-dependent transmission traits by Legionella pneumophila. Infect Immun. 2004, 72: 3284-3293. 10.1128/IAI.72.6.3284-3293.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Molofsky AB, Swanson MS: Legionella pneumophila CsrA is a pivotal repressor of transmission traits and activator of replication. Mol Microbiol. 2003, 50: 445-461. 10.1046/j.1365-2958.2003.03706.x.
Article
CAS
PubMed
Google Scholar
Rasis M, Segal G: The LetA-RsmYZ-CsrA regulatory cascade, together with RpoS and PmrA, post-transcriptionally regulates stationary phase activation of Legionella pneumophila Icm/Dot effectors. Mol Microbiol. 2009, 72: 995-1010. 10.1111/j.1365-2958.2009.06705.x.
Article
CAS
PubMed
Google Scholar
Sahr T, Brüggemann H, Jules M, Lomma M, Albert-Weissenberger C, Cazalet C, Buchrieser C: Two small ncRNAs jointly govern virulence and transmission in Legionella pneumophila . Mol Microbiol. 2009, 72: 741-762. 10.1111/j.1365-2958.2009.06677.x.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gal-Mor O, Segal G: Identification of CpxR as a positive regulator of icm and dot virulence genes of Legionella pneumophila. J Bacteriol. 2003, 185: 4908-4919. 10.1128/JB.185.16.4908-4919.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Altman E, Segal G: The response regulator CpxR directly regulates expression of several Legionella pneumophila icm/dot components as well as new translocated substrates. J Bacteriol. 2008, 190: 1985-1996. 10.1128/JB.01493-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Bachman MA, Swanson MS: Genetic evidence that Legionella pneumophila RpoS modulates expression of the transmission phenotype in both the exponential phase and the stationary phase. Infect Immun. 2004, 72: 2468-2476. 10.1128/IAI.72.5.2468-2476.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hengge R, Bukau B: Proteolysis in prokaryotes: protein quality control and regulatory principles. Mol Microbiol. 2003, 49: 1451-1462. 10.1046/j.1365-2958.2003.03693.x.
Article
CAS
PubMed
Google Scholar
Jenal U, Hengge-Aronis R: Regulation by proteolysis in bacterial cells. Curr Opin Microbiol. 2003, 6: 163-172. 10.1016/S1369-5274(03)00029-8.
Article
CAS
PubMed
Google Scholar
Yu AY, Houry WA: ClpP: a distinctive family of cylindrical energy-dependent serine proteases. FEBS Lett. 2007, 581: 3749-3757. 10.1016/j.febslet.2007.04.076.
Article
CAS
PubMed
Google Scholar
Gottesman S: Proteolysis in bacterial regulatory circuits. Annu Rev Cell Dev Biol. 2003, 19: 565-587. 10.1146/annurev.cellbio.19.110701.153228.
Article
CAS
PubMed
Google Scholar
Gerth U, Krüger E, Derré I, Msadek T, Hecker M: Stress induction of the Bacillus subtilis clpP gene encoding a homologue of the proteolytic component of the Clp protease and the involvement of ClpP and ClpX in stress tolerance. Mol Microbiol. 1998, 28: 787-802. 10.1046/j.1365-2958.1998.00840.x.
Article
CAS
PubMed
Google Scholar
Porankiewicz J, Wang J, Clarke AK: New insights into the ATP-dependent Clp protease: Escherichia coli and beyond. Mol Microbiol. 1999, 32: 449-458. 10.1046/j.1365-2958.1999.01357.x.
Article
CAS
PubMed
Google Scholar
Butler SM, Festa RA, Pearce MJ, Darwin KH: Self-compartmentalized bacterial proteases and pathogenesis. Mol Microbiol. 2006, 60: 553-562. 10.1111/j.1365-2958.2006.05128.x.
Article
CAS
PubMed
Google Scholar
Frees D, Savijoki K, Varmanen P, Ingmer H: Clp ATPases and ClpP proteolytic complexes regulate vital biological processes in low GC, Gram-positive bacteria. Mol Microbiol. 2007, 63: 1285-1295. 10.1111/j.1365-2958.2007.05598.x.
Article
CAS
PubMed
Google Scholar
Tomoyasu T, Ohkishi T, Ukyo Y, Tokumitsu A, Takaya A, Suzuki M, Sekiya K, Matsui H, Kutsukake K, Yamamoto T: The ClpXP ATP-dependent protease regulates flagellum synthesis in Salmonella enterica serovar typhimurium. J Bacteriol. 2002, 184: 645-653. 10.1128/JB.184.3.645-653.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Gaillot O, Pellegrini E, Bregenholt S, Nair S, Berche P: The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Mol Microbiol. 2000, 35: 1286-1294. 10.1046/j.1365-2958.2000.01773.x.
Article
CAS
PubMed
Google Scholar
Frees D, Qazi SN, Hill PJ, Ingmer H: Alternative roles of ClpX and ClpP in Staphylococcus aureus stress tolerance and virulence. Mol Microbiol. 2003, 48: 1565-1578. 10.1046/j.1365-2958.2003.03524.x.
Article
CAS
PubMed
Google Scholar
Frees D, Chastanet A, Qazi S, Sorensen K, Hill P, Msadek T, Ingmer H: Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus . Mol Microbiol. 2004, 54: 1445-1462. 10.1111/j.1365-2958.2004.04368.x.
Article
CAS
PubMed
Google Scholar
Lemos JA, Burne RA: Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans. J Bacteriol. 2002, 184: 6357-6366. 10.1128/JB.184.22.6357-6366.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang C, Li M, Dong D, Wang J, Ren J, Otto M, Gao Q: Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis . Microbes Infect. 2007, 9: 1376-1383. 10.1016/j.micinf.2007.06.012.
Article
CAS
PubMed
Google Scholar
Maurizi MR, Clark WP, Katayama Y, Rudikoff S, Pumphrey J, Bowers B, Gottesman S: Sequence and structure of ClpP, the proteolytic component of the ATP-dependent Clp protease of Escherichia coli . J Biol Chem. 1990, 265: 12536-12545.
CAS
PubMed
Google Scholar
Wang J, Hartling JA, Flanagan JM: The structure of ClpP at 2.3 A resolution suggests a model for ATP-dependent proteolysis. Cell. 1997, 91: 447-456. 10.1016/S0092-8674(00)80431-6.
Article
CAS
PubMed
Google Scholar
LeBlanc JJ, Davidson RJ, Hoffman PS: Compensatory functions of two alkyl hydroperoxide reductases in the oxidative defense system of Legionella pneumophila . J Bacteriol. 2006, 188: 6235-6244. 10.1128/JB.00635-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Catrenich CE, Johnson W: Characterization of the selective inhibition of growth of virulent Legionella pneumophila by supplemented Mueller-Hinton medium. Infect Immun. 1989, 57: 1862-1864.
PubMed Central
CAS
PubMed
Google Scholar
Sadosky AB, Wiater LA, Shuman HA: Identification of Legionella pneumophila genes required for growth within and killing of human macrophages. Infect Immun. 1993, 61: 5361-5373.
PubMed Central
CAS
PubMed
Google Scholar
Byrne B, Swanson MS: Expression of Legionella pneumophila virulence traits in response to growth conditions. Infect Immun. 1998, 66: 3029-3034.
PubMed Central
CAS
PubMed
Google Scholar
Albers U, Reus K, Shuman HA, Hilbi H: The amoebae plate test implicates a paralogue of lpxB in the interaction of Legionella pneumophila with Acanthamoeba castellanii. Microbiology. 2005, 151: 167-182. 10.1099/mic.0.27563-0.
Article
CAS
PubMed
Google Scholar
Berger KH, Isberg RR: Two distinct defects in intracellular growth complemented by a single genetic locus in Legionella pneumophila . Mol Microbiol. 1993, 7: 7-19. 10.1111/j.1365-2958.1993.tb01092.x.
Article
CAS
PubMed
Google Scholar
Vogel JP, Isberg RR: Cell biology of Legionella pneumophila . Curr Opin Microbiol. 1999, 2: 30-34. 10.1016/S1369-5274(99)80005-8.
Article
CAS
PubMed
Google Scholar
Cooke MS, Evans MD, Dizdaroglu M, Lunec J: Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J. 2003, 17: 1195-1214. 10.1096/fj.02-0752rev.
Article
CAS
PubMed
Google Scholar
Xiao H, Li TK, Yang JM, Liu LF: Acidic pH induces topoisomerase II-mediated DNA damage. Natl Acad Sci USA. 2003, 100: 5205-5210. 10.1073/pnas.0935978100.
Article
CAS
Google Scholar
Gonzalez M, Rasulova F, Maurizi MR, Woodgate R: Subunit-specific degradation of the UmuD/D' heterodimer by the ClpXP protease: the role of trans recognition in UmuD' stability. EMBO J. 2000, 19: 5251-5258. 10.1093/emboj/19.19.5251.
Article
PubMed Central
CAS
PubMed
Google Scholar
Michel A, Agerer F, Hauck CR, Herrmann M, Ullrich J, Hacker J, Ohlsen K: Global regulatory impact of ClpP protease of Staphylococcus aureus on regulons involved in virulence, oxidative stress response, autolysis, and DNA repair. J Bacteriol. 2006, 188: 5783-5796. 10.1128/JB.00074-06.
Article
PubMed Central
CAS
PubMed
Google Scholar
Savijoki K, Ingmer H, Frees D, Vogensen FK, Palva A, Varmanen P: Heat and DNA damage induction of the LexA-like regulator HdiR from Lactococcus lactis is mediated by RecA and ClpP. Mol Microbiol. 2003, 50: 609-621. 10.1046/j.1365-2958.2003.03713.x.
Article
CAS
PubMed
Google Scholar
Msadek T, Dartois V, Kunst F, Herbaud ML, Denizot F, Rapoport G: ClpP of Bacillus subtilis is required for competence development, motility, degradative enzyme synthesis, growth at high temperature and sporulation. Mol Microbiol. 1998, 27: 899-914. 10.1046/j.1365-2958.1998.00735.x.
Article
CAS
PubMed
Google Scholar
Jenal U, Fuchs T: An essential protease involved in bacterial cell-cycle control. EMBO J. 1998, 17: 5658-5669. 10.1093/emboj/17.19.5658.
Article
PubMed Central
CAS
PubMed
Google Scholar
Nair S, Poyart C, Beretti JL, Veiga-Fernandes H, Berche P, Trieu-Cuot P: Role of the Streptococcus agalactiae ClpP serine protease in heat-induced stress defence and growth arrest. Microbiology. 2003, 149: 407-417. 10.1099/mic.0.25783-0.
Article
CAS
PubMed
Google Scholar
Kock H, Gerth U, Hecker M: MurAA, catalysing the first committed step in peptidoglycan biosynthesis, is a target of Clp-dependent proteolysis in Bacillus subtilis . Mol Microbiol. 2004, 51: 1087-1102. 10.1046/j.1365-2958.2003.03875.x.
Article
CAS
PubMed
Google Scholar
Weart RB, Nakano S, Lane BE, Zuber P, Levin PA: The ClpX chaperone modulates assembly of the tubulin-like protein FtsZ. Mol Microbiol. 2005, 57: 238-249. 10.1111/j.1365-2958.2005.04673.x.
Article
CAS
PubMed
Google Scholar
Margolin W: FtsZ and the division of prokaryotic cells and organelles. Nat Rev Mol Cell Biol. 2005, 6: 862-871. 10.1038/nrm1745.
Article
CAS
PubMed
Google Scholar
Hovel-Miner G, Pampou S, Faucher SP, Clarke M, Morozova I, Morozov P, Russo JJ, Shuman HA, Kalachikov S: SigmaS controls multiple pathways associated with intracellular multiplication of Legionella pneumophila . J Bacteriol. 2009, 191: 2461-2473. 10.1128/JB.01578-08.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ibrahim YM, Kerr AR, Silva NA, Mitchell TJ: Contribution of the ATP-dependent protease ClpCP to the autolysis and virulence of Streptococcus pneumoniae. Infect Immun. 2005, 73: 730-740. 10.1128/IAI.73.2.730-740.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hengge-Aronis R: Signal transduction and regulatory mechanisms involved in control of the sigma(S) (RpoS) subunit of RNA polymerase. Microbiol Mol Biol Rev. 2002, 66: 373-395. 10.1128/MMBR.66.3.373-395.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jackson MW, Silva-Herzog E, Plano GV: The ATP-dependent ClpXP and Lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol. 2004, 54: 1364-1378. 10.1111/j.1365-2958.2004.04353.x.
Article
CAS
PubMed
Google Scholar
Loughlin MF, Arandhara V, Okolie C, Aldsworth TG, Jenks PJ: Helicobacter pylori mutants defective in the ClpP ATP-dependant protease and the chaperone ClpA display reduced macrophage and murine survival. Microb Pathog. 2009, 46: 53-57. 10.1016/j.micpath.2008.10.004.
Article
CAS
PubMed
Google Scholar
Sexton JA, Miller JL, Yoneda A, Kehl-Fie TE, Vogel JP: Legionella pneumophila DotU and IcmF are required for stability of the Dot/Icm complex. Infect Immun. 2004, 72: 5983-5992. 10.1128/IAI.72.10.5983-5992.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hammer BK, Swanson MS: Co-ordination of Legionella pneumophila virulence with entry into stationary phase by ppGpp. Mol Microbiol. 1999, 33: 721-731. 10.1046/j.1365-2958.1999.01519.x.
Article
CAS
PubMed
Google Scholar
Segal G, Shuman HA: Legionella pneumophila utilizes the same genes to multiply within Acanthamoeba castellanii and human macrophages. Infect Immun. 1999, 67: 2117-2124.
PubMed Central
CAS
PubMed
Google Scholar
Sambrook J, Russell DW: Molecular Cloning: a Laboratory Manual. 2001, Cold Spring Harbor, Cold Spring Harbor Press
Google Scholar
Ho SN, Hunt HD, Horton RM, Pullen JK, Pease LR: Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene. 1989, 77: 51-59. 10.1016/0378-1119(89)90358-2.
Article
CAS
PubMed
Google Scholar
Yu HB, Zhang YL, Lau YL, Yao F, Vilches S, Merino S, Tomas JM, Howard SP, Leung KY: Identification and characterization of putative virulence genes and gene clusters in Aeromonas hydrophila PPD134/91. Appl Environ Microbiol. 2005, 71: 4469-4477. 10.1128/AEM.71.8.4469-4477.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Köhler R, Bubert A, Goebel W, Steinert M, Hacker J, Bubert B: Expression and use of the green fluorescent protein as a reporter system in Legionella pneumophila. Mol Gen Genet. 2000, 262: 1060-1069. 10.1007/PL00008649.
Article
PubMed
Google Scholar
Chen DQ, Zheng XC, Lu YJ: Identification and characterization of novel ColE1-type, high-copy number plasmid mutants in Legionella pneumophila . Plasmid. 2006, 56: 167-178.
Article
CAS
PubMed
Google Scholar
Al-Khodor S, Price CT, Habyarimana F, Kalia A, Abu Kwaik Y: A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol. 2008, 70: 908-923.
PubMed Central
CAS
PubMed
Google Scholar