Banks A, Hilditch TP: The glyceride structure of beef tallows. Biochem J. 1931, 25: 1168-1182.
Article
PubMed Central
CAS
PubMed
Google Scholar
Menotti A, Kromhout D, Blackburn H, Fidanza F, Buzina R, Nissinen A: Food intake patterns and 25-year mortality from coronary heart disease: cross-cultural correlations in the Seven Countries Study. The Seven Countries Study Research Group. Eur J Epidemiol. 1999, 15: 507-515. 10.1023/A:1007529206050.
Article
CAS
PubMed
Google Scholar
Shorland FB, Weenink RO, Johns AT: Effect of the rumen on dietary fat. Nature, Lond. 1955, 175: 1129-1130. 10.1038/1751129a0.
Article
CAS
Google Scholar
Viviani R: Metabolism of long-chain fatty acids in the rumen. Adv Lipid Res. 1970, 8: 267-346.
CAS
PubMed
Google Scholar
Scollan ND, Choi NJ, Kurt E, Fisher AV, Enser M, Wood JD: Manipulating the fatty acid composition of muscle and adipose tissue in beef cattle. Br J Nutr. 2001, 85: 115-124. 10.1079/BJN2000223.
Article
CAS
PubMed
Google Scholar
Kritchevsky D: Antimutagenic and some other effects of conjugated linoleic acid. Br J Nutr. 2000, 83: 459-465.
CAS
PubMed
Google Scholar
Whigham LD, Cook ME, Atkinson RL: Conjugated linoleic acid: implications for human health. Pharmacol Res. 2000, 42: 503-510. 10.1006/phrs.2000.0735.
Article
CAS
PubMed
Google Scholar
Jenkins TC: Regulation of lipid metabolism in the rumen. J Nutr. 1994, 124: 1372S-1376S.
CAS
PubMed
Google Scholar
Offer NW, Marsden M, Phipps RH: Effect of oil supplementation of a diet containing a high concentration of starch on levels of trans fatty acids and conjugated linoleic acids in bovine milk. Anim Sci. 2001, 73: 533-540.
CAS
Google Scholar
Shingfield KJ, Ahvenjarvi S, Toivonen V, Arola A, Nurmela KVV, Huhtanen P, Griinari JM: Effect of dietary fish oil on biohydrogenation of fatty acids and milk fatty acid content in cows. Anim Sci. 2003, 77: 165-179.
CAS
Google Scholar
Wąsowska I, Maia M, Niedźwiedzka KM, Czauderna M, Ramalho-Ribeiro JMC, Devillard E, Shingfield KJ, Wallace RJ: Influence of fish oil on ruminal biohydrogenation of C18 unsaturated fatty acids. Br J Nutr. 2006, 95: 1199-1211. 10.1079/BJN20061783.
Article
PubMed
Google Scholar
Polan CE, McNeill JJ, Tove SB: Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol. 1964, 88: 1056-1064.
PubMed Central
CAS
PubMed
Google Scholar
Kepler CR, Hirons KP, McNeill JJ, Tove SB: Intermediates and products of the biohydrogenation of linoleic acid by Butyrivibrio fibrisolvens . J Biol Chem. 1966, 241: 1350-1354.
CAS
PubMed
Google Scholar
Kim YJ, Liu RH, Bond DR, Russell JB: Effect of linoleic acid concentration on conjugated linoleic acid production by Butyrivibrio fibrisolvens A38. Appl Environ Microbiol. 2000, 66: 5226-5230. 10.1128/AEM.66.12.5226-5230.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fukuda S, Furuya H, Suzuki Y, Asanuma N, Hino T: A new strain of Butyrivibrio fibrisolvens that has high ability to isomerise linoleic acid to conjugated linoleic acid. J Gen Appl Microbiol. 2005, 51: 105-113. 10.2323/jgam.51.105.
Article
CAS
PubMed
Google Scholar
Paillard D, McKain N, Chaudhary LC, Walker ND, Pizette F, Koppova I, McEwan NR, Kopecny J, Vercoe PE, Louis P, Wallace RJ: Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio -like bacteria from the rumen. Ant van Leeuw. 2006, 91: 417-422. 10.1007/s10482-006-9121-7.
Article
Google Scholar
Maia MRG, Chaudhary LC, Figueres L, Wallace RJ: Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Ant van Leeuw. 2006, 91: 303-314. 10.1007/s10482-006-9118-2.
Article
Google Scholar
Moon CD, Pacheco DM, Kelly WJ, Leahy SC, Li D, Kopecny J, Attwood GT: Reclassification of Clostridium proteoclasticum as Butyrivibrio proteoclasticus comb. nov., a butyrate-producing ruminal bacterium. Int J System Evol Microbiol. 2008, 58: 2041-2045. 10.1099/ijs.0.65845-0.
Article
CAS
Google Scholar
Stewart CS, Flint HJ, Bryant MP: The rumen bacteria. The rumen microbial ecosystem. Edited by: Hobson PN, Stewart CS. 1997, London: Chapman and Hall, 10-72.
Chapter
Google Scholar
Hazlewood GP, Orpin CG, Greenwood Y, Black ME: Isolation of proteolytic rumen bacteria by use of selective medium containing leaf fraction 1 protein (ribulose bis phosphate carboxylase). Appl Environ Microbiol. 1983, 45: 1780-1784.
PubMed Central
CAS
PubMed
Google Scholar
Wallace RJ, Brammall ML: The role of different species of rumen bacteria in the hydrolysis of protein in the rumen. J Gen Microbiol. 1985, 131: 821-832.
CAS
Google Scholar
Harfoot CG, Hazlewood GP: Lipid metabolism in the rumen. The rumen microbial ecosystem. Edited by: Hobson PN, Stewart CS. 1997, London: Chapman and Hall, 382-426.
Chapter
Google Scholar
Wallace RJ, Chaudhary LC, McKain N, McEwan NR, Richardson AJ, Vercoe PE, Walker ND, Paillard D: Clostridium proteoclasticum: a ruminal bacterium that forms stearic acid from linoleic acid. FEMS Microbiol Lett. 2006, 265: 195-201. 10.1111/j.1574-6968.2006.00487.x.
Article
CAS
Google Scholar
White RW, Kemp P, Dawson RMC: Isolation of a rumen bacterium that hydrogenates oleic acid as well as linoleic and linolenic acid. Biochem J. 1970, 116: 767-768.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kemp P, White RW, Lander DJ: The hydrogenation of unsaturated fatty acids by five bacterial isolates from the sheep rumen, including a new species. J Gen Microbiol. 1975, 90: 100-114.
Article
CAS
PubMed
Google Scholar
Hazlewood GP, Kemp P, Lauder D, Dawson RMC: C18 unsaturated fatty acid hydrogenation patterns of some rumen bacteria and their ability to hydrolyse exogenous phospholipid. Br J Nutr. 1976, 35: 293-297. 10.1079/BJN19760034.
Article
CAS
PubMed
Google Scholar
Henderson C: The effects of fatty acids on pure cultures of rumen bacteria. J Agric Sci Camb. 1973, 81: 107-112. 10.1017/S0021859600058378.
Article
CAS
Google Scholar
Marounek M, Skrivanova V, Savka O: Effect of caprylic, capric and oleic acid on growth of rumen and rat caecal bacteria. J Anim Feed Sci. 2002, 11: 507-516.
Google Scholar
Galbraith H, Miller TB, Paton AM, Thompson JK: Antibacterial activity of long-chain fatty acids and the reversal with calcium, magnesium, ergocalciferol and cholesterol. J Appl Bacteriol. 1971, 34: 803-813.
Article
CAS
PubMed
Google Scholar
Kemp P, Lander DJ: Hydrogenation in vitro of α-linolenic acid to stearic acid by mixed cultures of pure strains of rumen bacteria. J Gen Microbiol. 1984, 130: 527-533.
CAS
Google Scholar
Kemp P, Lander DJ, Gunstone FD: The hydrogenation of some cis- and trans-octadecenoic acids to stearic acid by a rumen Fusocillus sp. Br J Nutr. 1984, 52: 165-170. 10.1079/BJN19840083.
Article
CAS
PubMed
Google Scholar
Lennarz WJ: Lipid metabolism in the bacteria. Adv Lipid Res. 1966, 4: 175-225.
CAS
PubMed
Google Scholar
Hughes PE, Hunter WJ, Tove SB: Biohydrogenation of unsaturated fatty acids. Purification and properties of cis-9, trans-11-octadecadienoate reductase. J Biol Chem. 1982, 257: 3643-3649.
CAS
PubMed
Google Scholar
Keweloh H, Heipieper HJ: Trans unsaturated fatty acids in bacteria. Lipids. 1996, 31: 129-137. 10.1007/BF02522611.
Article
CAS
PubMed
Google Scholar
Cheng K-J, Costerton JW: Ultrastructure of Butyrivibrio fibrisolvens - a Gram-positive bacterium?. J Bacteriol. 1977, 129: 1506-1512.
PubMed Central
CAS
PubMed
Google Scholar
Mitchell P: Keilin's respiratory chain concept and its chemiosmotic consequences. Science. 1979, 206: 1148-1159. 10.1126/science.388618.
Article
CAS
PubMed
Google Scholar
Nichols DG: Bioenergetics: an introduction to the chemiosmotic theory. 1982, Academic Press, London, 190-
Google Scholar
Rottenberg H, Hashimoto K: Fatty acid uncoupling of oxidative phosphorylation in rat liver mitochondria. Biochemistry. 1986, 25: 1747-1755. 10.1021/bi00355a045.
Article
CAS
PubMed
Google Scholar
Rottenberg H, Steiner-Mordoch S: Fatty acids decouple oxidative phosphorylation by dissipating intramembranal protons without inhibiting ATP synthesis driven by the proton electrochemical gradient. FEBS Lett. 1986, 202: 314-318. 10.1016/0014-5793(86)80708-6.
Article
CAS
PubMed
Google Scholar
Boynton ZL, Bennett GN, Rudolph FB: Intracellular concentrations of Coenzyme A and its derivatives from Clostridium acetobutylicum ATCC 824 and their roles in enzyme regulation. Appl Environ Microbiol. 1994, 60: 39-44.
PubMed Central
CAS
PubMed
Google Scholar
Nicholson JK, Lindon JC, Holmes E: 'Metabonomics': understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica. 1999, 29: 1181-1189. 10.1080/004982599238047.
Article
CAS
PubMed
Google Scholar
Owens FN, Secrist DS, Hill WJ, Gill DR: Acidosis in cattle: A review. J Anim Sci. 1998, 76: 275-286.
CAS
PubMed
Google Scholar
Hungate RE: A roll tube method for cultivation of strict anaerobes. Methods in Microbiology. Edited by: Norris JR, Ribbons DW. 1969, London: Academic Press, 3B: 117-132. full_text.
Google Scholar
Hobson PN: Rumen bacteria. Methods in Microbiology. Edited by: Norris JR, Ribbons DW. 1969, London: Academic Press, 3B: 133-139. full_text.
Google Scholar
Roché C, Albertyn H, Van Gylswyk , Kistner A: The growth response of cellulolytic acetate-utilising and acetate-producing butyrivibrio's to volatile fatty acids and other nutrients. J Gen Microbiol. 1973, 78: 253-260.
Article
PubMed
Google Scholar
Larson TR, Graham IA: Technical Advance: a novel technique for the sensitive quantification of acyl CoA esters from plant tissues. Plant. 2001, 25: 115-125. 10.1046/j.1365-313x.2001.00929.x.
Article
CAS
Google Scholar
Ishizaki K, Larson TR, Schauer N, Fernie AR, Graham IA, Leaver CJ: The critical role of Arabidopsis electron-transfer flavoprotein:ubiquinone oxidoreductase during dark-induced starvation. Plant Cell. 2005, 17: 2587-2600. 10.1105/tpc.105.035162.
Article
PubMed Central
CAS
PubMed
Google Scholar
Herbert D, Phipps PJ, Strange RE: Chemical analysis of microbial cells. Methods in Microbiology. Edited by: Norris JR, Ribbons DW. 1971, London: Academic Press, 5B: 209-344. full_text.
Google Scholar