WHO: Tuberculosis Facts Sheet. 2007
Google Scholar
Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, et al: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature. 1998, 393: 537-544. 10.1038/31159.
Article
CAS
PubMed
Google Scholar
Kang CM, Abbott DW, Park ST, Dascher CC, Cantley LC, Husson RN: The Mycobacterium tuberculosis serine/threonine kinases PknA and PknB: substrate identification and regulation of cell shape. Genes & Development. 2005, 19: 1692-1704.
Article
CAS
Google Scholar
Flardh K: Essential role of DivIVA in polar growth and morphogenesis in Streptomyces coelicolor A3(2). Mol Microbiol. 2003, 49: 1523-1536. 10.1046/j.1365-2958.2003.03660.x.
Article
PubMed
Google Scholar
Cha JH, Stewart GC: The divIVA minicell locus of Bacillus subtilis. Journal of Bacteriology. 1997, 179: 1671-1683.
PubMed Central
CAS
PubMed
Google Scholar
Thomaides HB, Freeman M, El Karoui M, Errington J: Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev. 2001, 15: 1662-1673. 10.1101/gad.197501.
Article
PubMed Central
CAS
PubMed
Google Scholar
Marston AL, Errington J: Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Molecular Microbiology. 1999, 33: 84-96. 10.1046/j.1365-2958.1999.01450.x.
Article
CAS
PubMed
Google Scholar
Marston AL, Thomaides HB, Edwards DH, Sharpe ME, Errington J: Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes & Development. 1998, 12: 3419-3430.
Article
CAS
Google Scholar
Letek M, Ordonez E, Vaquera J, Margolin W, Flardh K, Mateos LM, Gil JA: DivIVA is required for polar growth in the MreB-lacking rod-shaped actinomycete Corynebacterium glutamicum. J Bacteriol. 2008, 190: 3283-3292. 10.1128/JB.01934-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Ramos A, Honrubia MP, Valbuena N, Vaquera J, Mateos LM, Gil JA: Involvement of DivIVA in the morphology of the rod-shaped actinomycete Brevibacterium lactofermentum. Microbiology. 2003, 149: 3531-3542. 10.1099/mic.0.26653-0.
Article
CAS
PubMed
Google Scholar
Kang CM, Nyayapathy S, Lee JY, Suh JW, Husson RN: Wag31, a homologue of the cell division protein DivIVA, regulates growth, morphology and polar cell wall synthesis in mycobacteria. Microbiology. 2008, 154: 725-735. 10.1099/mic.0.2007/014076-0.
Article
CAS
PubMed
Google Scholar
Nguyen L, Scherr N, Gatfield J, Walburger A, Pieters J, Thompson CJ: Antigen 84, an Effector of Pleiomorphism in Mycobacterium smegmatis. J Bacteriol. 2007, 189: 7896-7910. 10.1128/JB.00726-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mukherjee P, Sureka K, Datta P, Hossain T, Barik S, Das KP, Kundu M, Basu J: Novel role of Wag31 in protection of mycobacteria under oxidative stress. Mol Microbiol. 2009, 73: 103-119. 10.1111/j.1365-2958.2009.06750.x.
Article
CAS
PubMed
Google Scholar
Daniel RA, Errington J: Control of cell morphogenesis in bacteria: two distinct ways to make a rod-shaped cell. Cell. 2003, 113: 767-776. 10.1016/S0092-8674(03)00421-5.
Article
CAS
PubMed
Google Scholar
Stahlberg H, Kutejova E, Muchova K, Gregorini M, Lustig A, Muller SA, Olivieri V, Engel A, Wilkinson AJ, Barak I: Oligomeric structure of the Bacillus subtilis cell division protein DivIVA determined by transmission electron microscopy. Mol Microbiol. 2004, 52: 1281-1290. 10.1111/j.1365-2958.2004.04074.x.
Article
CAS
PubMed
Google Scholar
Kolonin MG, Zhong J, Finley RL: Interaction mating methods in two-hybrid systems. Methods Enzymol. 2000, 328: 26-46. 10.1016/S0076-6879(00)28388-2.
Article
CAS
PubMed
Google Scholar
van Heijenoort J: Recent advances in the formation of the bacterial peptidoglycan monomer unit. Nat Prod Rep. 2001, 18: 503-519. 10.1039/a804532a.
Article
CAS
PubMed
Google Scholar
van Heijenoort J: Lipid intermediates in the biosynthesis of bacterial peptidoglycan. Microbiol Mol Biol Rev. 2007, 71: 620-635. 10.1128/MMBR.00016-07.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mahapatra S, Yagi T, Belisle JT, Espinosa BJ, Hill PJ, McNeil MR, Brennan PJ, Crick DC: Mycobacterial lipid II is composed of a complex mixture of modified muramyl and peptide moieties linked to decaprenyl phosphate. J Bacteriol. 2005, 187: 2747-2757. 10.1128/JB.187.8.2747-2757.2005.
Article
PubMed Central
CAS
PubMed
Google Scholar
Crick DC, Mahapatra S, Brennan PJ: Biosynthesis of the arabinogalactan-peptidoglycan complex of Mycobacterium tuberculosis. Glycobiology. 2001, 11: 107R-118R. 10.1093/glycob/11.9.107R.
Article
CAS
PubMed
Google Scholar
Crick DC, Schulbach MC, Zink EE, Macchia M, Barontini S, Besra GS, Brennan PJ: Polyprenyl phosphate biosynthesis in Mycobacterium tuberculosis and Mycobacterium smegmatis. J Bacteriol. 2000, 182: 5771-5778. 10.1128/JB.182.20.5771-5778.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Khasnobis S, Zhang J, Angala SK, Amin AG, McNeil MR, Crick DC, Chatterjee D: Characterization of a specific arabinosyltransferase activity involved in mycobacterial arabinan biosynthesis. Chem Biol. 2006, 13: 787-795. 10.1016/j.chembiol.2006.05.016.
Article
CAS
PubMed
Google Scholar
Sengupta A, Brar N, Davis EJ: Bioaerosol detection and characterization by surface-enhanced Raman spectroscopy. J Colloid Interface Sci. 2007, 309: 36-43. 10.1016/j.jcis.2007.02.015.
Article
CAS
PubMed
Google Scholar
Laucks ML, Sengupta A, Junge K, Davis EJ, Swanson BD: Comparison of psychro-active arctic marine bacteria and common mesophillic bacteria using surface-enhanced Raman spectroscopy. Appl Spectrosc. 2005, 59: 1222-1228. 10.1366/000370205774430891.
Article
CAS
PubMed
Google Scholar
Hamasha K, Sahana MB, Jani C, Nyayapathy S, Kang CM, Rehse SJ: The effect of Wag31 phosphorylation on the cells and the cell envelope fraction of wild-type and conditional mutants of Mycobacterium smegmatis studied by visible-wavelength Raman spectroscopy. Biochem Biophys Res Commun. 2010, 391: 664-668. 10.1016/j.bbrc.2009.11.117.
Article
CAS
PubMed
Google Scholar
Silvestroni A, Jewell KA, Lin WJ, Connelly JE, Ivancic MM, Tao WA, Rajagopal L: Identification of serine/threonine kinase substrates in the human pathogen group B streptococcus. J Proteome Res. 2009, 8: 2563-2574. 10.1021/pr900069n.
Article
PubMed Central
CAS
PubMed
Google Scholar
Novakova L, Bezouskova S, Pompach P, Spidlova P, Saskova L, Weiser J, Branny P: Identification of multiple substrates of the StkP Ser/Thr protein kinase in Streptococcus pneumoniae. J Bacteriol. 2010, 192: 3629-3638. 10.1128/JB.01564-09.
Article
PubMed Central
CAS
PubMed
Google Scholar
Fiuza M, Canova MJ, Patin D, Letek M, Zanella-Cleon I, Becchi M, Mateos LM, Mengin-Lecreulx D, Molle V, Gil JA: The MurC Ligase Essential for Peptidoglycan Biosynthesis Is Regulated by the Serine/Threonine Protein Kinase PknA in Corynebacterium glutamicum. J Biol Chem. 2008, 283: 36553-36563. 10.1074/jbc.M807175200.
Article
PubMed Central
CAS
PubMed
Google Scholar
Parikh A, Verma SK, Khan S, Prakash B, Nandicoori VK: PknB-mediated phosphorylation of a novel substrate, N-acetylglucosamine-1-phosphate uridyltransferase, modulates its acetyltransferase activity. J Mol Biol. 2009, 386: 451-464. 10.1016/j.jmb.2008.12.031.
Article
CAS
PubMed
Google Scholar
Thakur M, Chakraborti PK: Ability of PknA, a mycobacterial eukaryotic-type serine/threonine kinase, to transphosphorylate MurD, a ligase involved in the process of peptidoglycan biosynthesis. Biochem J. 2008, 415: 27-33. 10.1042/BJ20080234.
Article
CAS
PubMed
Google Scholar
Herrmann H, Haner M, Brettel M, Ku NO, Aebi U: Characterization of distinct early assembly units of different intermediate filament proteins. Journal of Molecular Biology. 1999, 286: 1403-1420. 10.1006/jmbi.1999.2528.
Article
CAS
PubMed
Google Scholar
Singh A, Mai D, Kumar A, Steyn AJ: Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103: 11346-11351. 10.1073/pnas.0602817103.
Article
PubMed Central
CAS
PubMed
Google Scholar
Shah IM, Laaberki MH, Popham DL, Dworkin J: A eukaryotic-like Ser/Thr kinase signals bacteria to exit dormancy in response to peptidoglycan fragments. Cell. 2008, 135: 486-496. 10.1016/j.cell.2008.08.039.
Article
PubMed Central
CAS
PubMed
Google Scholar
Mengin-Lecreulx D, van Heijenoort J: Effect of growth conditions on peptidoglycan content and cytoplasmic steps of its biosynthesis in Escherichia coli. J Bacteriol. 1985, 163: 208-212.
PubMed Central
CAS
PubMed
Google Scholar
Finley RL, Zhang H, Zhong J, Stanyon CA: Regulated expression of proteins in yeast using the MAL61-62 promoter and a mating scheme to increase dynamic range. Gene. 2002, 285: 49-57. 10.1016/S0378-1119(02)00420-1.
Article
CAS
PubMed
Google Scholar
Blokpoel MC, Murphy HN, O'Toole R, Wiles S, Runn ES, Stewart GR, Young DB, Robertson BD: Tetracycline-inducible gene regulation in mycobacteria. Nucleic Acids Research. 2005, 33: e22-10.1093/nar/gni023.
Article
PubMed Central
PubMed
Google Scholar
Hermans PW, Abebe F, Kuteyi VI, Kolk AH, Thole JE, Harboe M: Molecular and immunological characterization of the highly conserved antigen 84 from Mycobacterium tuberculosis and Mycobacterium leprae. Infection & Immunity. 1995, 63: 954-960.
CAS
Google Scholar
Predich M, Doukhan L, Nair G, Smith I: Characterization of RNA polymerase and two sigma-factor genes from Mycobacterium smegmatis. Mol Microbiol. 1995, 15: 355-366. 10.1111/j.1365-2958.1995.tb02249.x.
Article
CAS
PubMed
Google Scholar
Han J-S, Lee JJ, Anandan T, Zeng M, Sripathi S, Jahng WJ, Lee SS, Suh JW, Kang CM: Characterization of a chromosomal toxin-antitoxin, Rv1102c-Rv1103c system in Mycobacterium tuberculosis. Biochemical and Biophysical Research communications. 2010,
Google Scholar
Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR: Isolation and characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis. Mol Microbiol. 1990, 4: 1911-1919. 10.1111/j.1365-2958.1990.tb02040.x.
Article
CAS
PubMed
Google Scholar