Favinger J, Stadtwald R, Gest H: Rhodospirillum centenum, sp. nov., a thermotolerant cyst-forming anoxygenic photosynthetic bacterium. Antonie van Leeuwenhoek. 1989, 55: 291-296. 10.1007/BF00393857.
Article
CAS
PubMed
Google Scholar
Nickens D, Fry CJ, Ragatz L, Bauer CE, Gest H: Biotype of the nonsulfur purple photosynthetic bacterium Rhodospirillum centenum. Arch Microbiol. 1996, 165: 91-96. 10.1007/s002030050302.
Article
CAS
Google Scholar
Kawasaki H, Hoshino Y, Kuraishi H, Yamasato K: Rhodocista centenaria gen. nov., sp. nov., a cyst-forming anoxygenic photosynthetic bacterium and its phylogenetic position in the proteobacteria alpha group. J Gen Appl Microbiol. 1992, 38: 541-551. 10.2323/jgam.38.541.
Article
CAS
Google Scholar
Zhang D, Yang H, Zhang W, Huang Z, Liu SJ: Rhodocista pekingensis sp. nov., a cyst-forming phototrophic bacterium from a municipal wastewater treatment plant. Int J Syst Evol Microbiol. 2003, 53: 1111-1114. 10.1099/ijs.0.02500-0.
Article
CAS
PubMed
Google Scholar
Do TT, Tran VN, Kleiner D: Physiological versatility of the genus Rhodocista. Z Naturforsch. 2007, 62c: 571-575.
Google Scholar
Stoffels M, Castellanos T, Hartmann A: Design and application of new 16S rRNA-targeted oligonucleotide probes for the Azospirillum-Skermanella-Rhodocista-cluster. Syst Appl Microbiol. 2001, 24: 83-97. 10.1078/0723-2020-00011.
Article
CAS
PubMed
Google Scholar
Engelmann TW: Bacterium photometricum - Ein Beitrag zur vergleichenden Physiologie des Licht- und Farbsinnes. Arch Physiol. 1883, 30: 95-124. 10.1007/BF01674325.
Article
Google Scholar
Manten A: Phototaxis in the purple bacterium Rhodospirillum rubrum and the relation between phototaxis and photosynthesis. Antonie van Leeuwenhoek. 1948, 14: 65-86. 10.1007/BF02272681.
Article
CAS
PubMed
Google Scholar
Ragatz L, Jiang ZY, Bauer CE, Gest H: Phototactic purple bacteria. Nature. 1994, 370: 104-10.1038/370104a0.
Article
Google Scholar
Ragatz L, Jiang ZY, Bauer CE, Gest H: Macroscopic phototactic behaviour of the purple photosynthetic bacterium Rhodospirillum centenum. Arch Microbiol. 1995, 163: 1-6. 10.1007/BF00262196.
Article
CAS
PubMed
Google Scholar
McClain J, Rollo DR, Rushing BG, Bauer CE: Rhodospirillum centenum utilizes separate motor and switch components to control lateral and polar flagellum rotation. J Bacteriol. 2002, 184: 2429-2438. 10.1128/JB.184.9.2429-2438.2002.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jiang ZY, Bauer CE: Analysis of a chemotaxis operon from Rhodospirillum centenum. J Bacteriol. 1997, 179: 5712-5719.
PubMed Central
CAS
PubMed
Google Scholar
Berleman JE, Bauer CE: Involvement of a che-like signal transduction cascade in regulating cyst cell development in Rhodospirillum centenum. Mol Microbiol. 2005, 56: 1457-1466. 10.1111/j.1365-2958.2005.04646.x.
Article
CAS
PubMed
Google Scholar
Berleman JE, Bauer CE: A che-like signal transduction cascade involved in controlling flagella biosynthesis in Rhodospirillum centenum. Mol Microbiol. 2005, 55: 1390-1402. 10.1111/j.1365-2958.2005.04489.x.
Article
CAS
PubMed
Google Scholar
Lu YK, Marden J, Swingley WD, Mastrian SD, Chowdhury SR, Hao J, Helmy T, Kim S, Kurdoglu A, Matthies H, Rollo D, Stothard P, Blankenship RE, Bauer CE, Touchman JW: Metabolic flexibility revealed in the genome of the cyst-forming α-1 proteobacterium Rhodospirillum centenum. BMC Genomics. 2010, 11: 325-10.1186/1471-2164-11-325.
Article
PubMed Central
PubMed
Google Scholar
Gegner JA, Graham DR, Roth AF, Dahlquist FW: Assembly of an MCP receptor, CheW, and kinase CheA complex in the bacterial chemotaxis signal transduction pathway. Cell. 1992, 70: 975-982. 10.1016/0092-8674(92)90247-A.
Article
CAS
PubMed
Google Scholar
Jiang ZY, Gest H, Bauer CE: Chemosensory and photosensory perception in purple photosynthetic bacteria utilize common signal transduction components. J Bacteriol. 1997, 179: 5720-5727.
PubMed Central
CAS
PubMed
Google Scholar
Foynes S, Dorrell S, Ward SJ, Stabler RA, McColm AA, Rycroft AN, Wren BW: Helicobacter pylori possesses two CheY response regulators and a histidine kinase sensor, CheA, which are essential for chemotaxis and colonization of the gastric mucosa. Infect Immun. 2000, 68: 2016-2023. 10.1128/IAI.68.4.2016-2023.2000.
Article
PubMed Central
CAS
PubMed
Google Scholar
Jiang ZY, Rushing BG, Bai Y, Gest H, Bauer CE: Isolation of Rhodospirillum centenum mutants defective in phototactic colony motility by transposon mutagenesis. J Bacteriol. 1998, 180: 1248-1255.
PubMed Central
CAS
PubMed
Google Scholar
van der Horst MA, Laan W, Yeremenko S, Wende A, Palm P, Oesterhelt D, Hellingwerf KJ: From primary photochemistry to biological function in the blue-light photoreceptors PYP and AppA. Photochem Photobiol Sci. 2005, 4: 688-693. 10.1039/b418442b.
Article
CAS
PubMed
Google Scholar
Imamoto Y, Kataoka M: Structure and photoreaction of photoactive yellow protein, a structural prototype of the PAS domain superfamily. Photochem Photobiol. 2007, 83: 40-49. 10.1562/2006-02-28-IR-827.
Article
CAS
PubMed
Google Scholar
Jiang ZY, Swem LR, Rushing BG, Devanathan S, Tollin G, Bauer CE: Bacterial photoreceptor with similarity to photoactive yellow protein and plant phytochromes. Science. 1999, 285: 406-409. 10.1126/science.285.5426.406.
Article
CAS
PubMed
Google Scholar
Sanders DA, Mendez B, Koshland D: Role of the CheW protein in bacterial chemotaxis: overexpression is equivalent to absence. J Bacteriol. 1989, 171: 6271-6278.
PubMed Central
CAS
PubMed
Google Scholar
Studdert CA, Parkinson JS: Insights into the organization and dynamics of bacterial chemoreceptor clusters through in vivo crosslinking studies. Proc Natl Acad Sci USA. 2005, 102: 15623-15628. 10.1073/pnas.0506040102.
Article
PubMed Central
CAS
PubMed
Google Scholar
Conley PM, Wolfe AJ, Blair DF, Berg HC: Both CheA and CheW are required for reconstitution of chemotactic signaling in Escherichia coli. J Bacteriol. 1989, 171: 5190-5193.
PubMed Central
CAS
PubMed
Google Scholar
Liu JD, Parkinson JS: Role of CheW protein in coupling membrane receptors to the intracellular signaling system of bacterial chemotaxis. Proc Natl Acad Sci USA. 1989, 86: 8703-8707. 10.1073/pnas.86.22.8703.
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhang P, Khursigara CM, Hartnell LM, Subramaniam S: Direct visualization of Escherichia coli chemotaxis receptor arrays using cryo-electron microsopy. Proc Natl Acad Sci USA. 2007, 104: 3777-3781. 10.1073/pnas.0610106104.
Article
PubMed Central
CAS
PubMed
Google Scholar
Cardozo MJ, Massazza DA, Parkinson JS, Studdert CA: Disruption of chemoreceptor signaling arrays by high level of CheW, the receptor-kinase coupling protein. Mol Microbiol. 2010, 75: 1171-1181. 10.1111/j.1365-2958.2009.07032.x.
Article
CAS
PubMed
Google Scholar
Kim D, Forst S: Genomic analysis of the histidine kinase family in bacteria and archaea. Microbiology. 2001, 147: 1197-1212.
Article
CAS
PubMed
Google Scholar
Palleroni NJ: Chamber for bacterial chemotaxis experiments. Appl Environ Microbiol. 1976, 32: 729-730.
PubMed Central
CAS
PubMed
Google Scholar
Gegner JA, Dahlquist FW: Signal transduction in bacteria: CheW forms a reversible complex with the protein kinase CheA. Proc Natl Acad Sci USA. 1991, 88: 750-754. 10.1073/pnas.88.3.750.
Article
PubMed Central
CAS
PubMed
Google Scholar
Francis NR, Wolanin PM, Stock JB, DeRosier DJ, Thomas DR: Three-dimensional structure and organization of a receptor/signaling complex. Proc Natl Acad Sci USA. 2004, 101: 17480-17485. 10.1073/pnas.0407826101.
Article
PubMed Central
CAS
PubMed
Google Scholar
Li M, Hazelbauer GL: Cellular stoichiometry of the components of the chemotaxis signaling complex. J Bacteriol. 2004, 186: 3687-3694. 10.1128/JB.186.12.3687-3694.2004.
Article
PubMed Central
CAS
PubMed
Google Scholar
Kentner D, Thiem S, Hildenbeutel M, Sourjik V: Determinants of chemoreceptor cluster formation in Escherichia coli. Mol Microbiol. 2006, 61: 407-417. 10.1111/j.1365-2958.2006.05250.x.
Article
CAS
PubMed
Google Scholar
Baker MD, Wolanin PM, Stock JB: Signal transduction in bacterial chemotaxis. Bioessays. 2006, 28: 9-22. 10.1002/bies.20343.
Article
CAS
PubMed
Google Scholar
Kyndt JA, Fitch JC, Meyer TE, Cusanovich MA: The photoactivated PYP domain of Rhodospirillum centenum Ppr accelerates the recovery of the bacteriophytochrome domain after white light illumination. Biochemistry. 2007, 46: 8256-8262. 10.1021/bi700616j.
Article
CAS
PubMed
Google Scholar
Chung YH, Masuda S, Bauer CE: Purification and reconstitution of PYP-phytochrome with biliverdin and 4-hydroxycinnamic acid. Methods Enzymol. 2007, 422: 184-189. full_text.
Article
PubMed Central
CAS
PubMed
Google Scholar
Hennecke H, Günther I, Binder F: A novel cloning vector for the direct selection of recombinant DNA in E. coli. Gene. 1982, 19: 231-234. 10.1016/0378-1119(82)90011-7.
Article
CAS
PubMed
Google Scholar
Falciatore A, Bowler C: The evolution and function of blue and red light photoreceptors. Curr Top Dev Biol. 2005, 68: 317-350. 10.1016/S0070-2153(05)68011-8.
Article
CAS
PubMed
Google Scholar
Genick UK, Borgstahl GE, Ng K, Ren Z, Pradervand C, Burke PM, Srajer V, Teng TY, Schildkamp W, McRee DE, Moffat K, Getzoff ED: Structure of a protein photocycle intermediate by millisecond time-resolved crystallography. Science. 1997, 275: 1471-1475. 10.1126/science.275.5305.1471.
Article
CAS
PubMed
Google Scholar
Hughes J, Lamparter T, Mittmann F, Hartmann E, Gärtner W, Wilde A, Börner T: A prokaryotic phytochrome. Nature. 1997, 386: 663-10.1038/386663a0.
Article
CAS
PubMed
Google Scholar
Wilde A, Fiedler B, Börner T: The cyanobacterial phytochrome Cph2 inhibits phototaxis towards blue light. Mol Microbiol. 2002, 44: 981-988. 10.1046/j.1365-2958.2002.02923.x.
Article
CAS
PubMed
Google Scholar
Ng WO, Grossman AR, Bhaya DJ: Multiple light inputs control phototaxis in Synechocystis sp. strain PCC6803. J Bacteriol. 2003, 185: 1599-1607. 10.1128/JB.185.5.1599-1607.2003.
Article
PubMed Central
CAS
PubMed
Google Scholar
Sourjik V, Schmitt R: Phosphotransfer between CheA, CheY1, and CheY2 in the chemotaxis signal transduction chain of Rhizobium meliloti. Biochemistry. 1998, 37: 2327-2335. 10.1021/bi972330a.
Article
CAS
PubMed
Google Scholar
Jiménez-Pearson MA, Delany I, Scarlato V, Beier D: Phosphate flow in the chemotactic response system of Helicobacter pylori. Microbiology. 2005, 151: 3299-3311. 10.1099/mic.0.28217-0.
Article
PubMed
Google Scholar
Li ZH, Dong K, Sun JC, Yuan JP, Hu BY, Liu JX, Zhao GP, Guo XK: Characterization of cheW genes of Leptospira interrogans and their effects in Escherichia coli. Acta Biochim Biophys Sin. 2007, 38: 79-88. 10.1111/j.1745-7270.2006.00137.x.
Article
Google Scholar
Li Y, Hu Y, Fu W, Xia B, Jin C: Solution structure of the bacterial chemotaxis adaptor protein CheW from Escherichia coli. Biochem Biophys Res Commun. 2007, 360: 863-867. 10.1016/j.bbrc.2007.06.146.
Article
CAS
PubMed
Google Scholar
Porter SL, Warren AV, Martin AC, Armitage JP: The third chemotaxis locus of Rhodobacter sphaeroides is essential for chemotaxis. Mol Microbiol. 2002, 46: 1081-1094. 10.1046/j.1365-2958.2002.03218.x.
Article
CAS
PubMed
Google Scholar
Stock AM, Robinson VL, Goudreau PN: Two-component signal transduction. Ann Rev Biochem. 2000, 69: 183-215. 10.1146/annurev.biochem.69.1.183.
Article
CAS
PubMed
Google Scholar
Jiang ZY, Bauer CE: Component of the Rhodospirillum centenum photosensory apparatus with structural and functional similarity to methyl-accepting chemotaxis protein receptors. J Bacteriol. 2001, 183: 171-177. 10.1128/JB.183.1.171-177.2001.
Article
PubMed Central
CAS
PubMed
Google Scholar
Maniatis T, Fritsch EF, Sambrook J: Molecular Cloning: A Laboratory Manual. 1982, Cold Spring Harbor: Cold Spring Harbor Press
Google Scholar
Miroux B, Walker JE: Over-production of proteins in Escherichia coli: mutant hosts that allow synthesis of some membrane proteins and globular proteins at high levels. J Mol Biol. 1996, 260: 289-298. 10.1006/jmbi.1996.0399.
Article
CAS
PubMed
Google Scholar
Abouhamad WN, Manson M, Gibson MM, Higgins CF: Peptide transport and chemotaxis in Escherichia coli and Salmonella typhimurium: characterization of the dipeptide permease (Dpp) and the dipeptide-binding protein. Mol Microbiol. 1991, 5: 1035-1047. 10.1111/j.1365-2958.1991.tb01876.x.
Article
CAS
PubMed
Google Scholar
Tabor S, Richardson CC: A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad SciUSA. 1985, 82: 1074-1078. 10.1073/pnas.82.4.1074.
Article
CAS
Google Scholar
Guzman LM, Belin D, Carson MJ, Beckwith J: Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol. 1995, 177: 4121-4130.
PubMed Central
CAS
PubMed
Google Scholar
Cold Spring Harbor Laboratory, Miller J: Experiments in Molecular Genetics. 1972, Cold Spring Harbor Laboratory
Google Scholar
Laemmli UK: Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970, 227: 680-685. 10.1038/227680a0.
Article
CAS
PubMed
Google Scholar
Figurski DH, Helinski DR: Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. Proc Natl Acad Sci USA. 1979, 76: 1648-1652. 10.1073/pnas.76.4.1648.
Article
PubMed Central
CAS
PubMed
Google Scholar
Willetts N: Conjugation. Methods Microbiol. 1984, 17: 33-59. full_text.
Article
CAS
Google Scholar
Kiefer D, Hu X, Dalbey R, Kuhn A: Negatively charged amino acid residues play an active role in orienting the Sec-independent Pf3 coat protein in the Escherichia coli inner membrane. EMBO J. 1997, 16: 2197-2204. 10.1093/emboj/16.9.2197.
Article
PubMed Central
CAS
PubMed
Google Scholar
T D, Kuhn A: Hydrophobic forces drive spontaneous membrane insertion of the bacteriophage Pf3 coat protein without topological control. EMBO J. 1999, 18: 6299-6306. 10.1093/emboj/18.22.6299.
Article
Google Scholar
Tartoff KD, Hobbs CA: Improved media for growing plasmid and cosmid clones. Bethesda Res Lab Focus. 1987, 9: 12-
Google Scholar
Schkölziger S: Klonierung und Expression des ppr-Gens aus Rhodospirillum centenum. Diploma-thesis. 2000, University of Hohenheim, Institute of Microbiology
Google Scholar