Amraei S, Eslami G, Taherpour A, Hashemi A. Relationship between MOX genes and antibiotic resistance in Klebsiella pneumoniae strains in nosocomial infections. Micro Nano Bio Asp. 2022;1(2):12–7.
Google Scholar
Bahador A, Raoofian R, Taheri M, Pourakbari B, Hashemizadeh Z, Hashemi FB. Multidrug resistance among Acinetobacter baumannii isolates from Iran: changes in antimicrobial susceptibility patterns and genotypic profile. Microb Drug Resist. 2014;20(6):632–40.
Article
CAS
Google Scholar
Amraei S, Eslami G, Taherpour A, Hashemi A. The role of ACT and FOX genes in Klebsiella pneumoniae strains isolated from hospitalized patients. Micro Nano Bio Asp. 2022;1(2):18–25.
Google Scholar
Alavi M, Hamblin MR, Kennedy JF. Antimicrobial applications of lichens: secondary metabolites and green synthesis of silver nanoparticles: a review. Nano Micro Bios. 2022;1(1):15–21.
Google Scholar
Alavi M, Martinez F, Delgado DR, Tinjacá DA. Anticancer and antibacterial activities of embelin: micro and nano aspects. Micro Nano Bio Asp. 2022;1(1):30–7.
Google Scholar
Saffariha M, Jahani A, Jahani R, Latif S. Prediction of hypericin content in Hypericum perforatum L. in different ecological habitat using artificial neural networks. Plant Methods. 2021;17(1):1–7.
Article
Google Scholar
Kousovista R, Athanasiou C, Liaskonis K, Ivopoulou O, Ismailos G, Karalis V. Correlation between Acinetobacter baumannii resistance and hospital use of Meropenem, Cefepime, and ciprofloxacin: time series analysis and dynamic regression models. Pathogens. 2021;10(4):480.
Article
CAS
Google Scholar
Pimentel C, Le C, Tuttobene MR, Subils T, Martinez J, Sieira R, et al. Human pleural fluid and human serum albumin modulate the behavior of a hypervirulent and multidrug-resistant (MDR) Acinetobacter baumannii representative strain. Pathogens. 2021;10(4):471.
Article
CAS
Google Scholar
Rumbo-Feal S, Gomez MJ, Gayoso C, Álvarez-Fraga L, Cabral MP, Aransay AM, et al. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells. PLoS One. 2013;8(8):e72968.
Article
CAS
Google Scholar
Tiwari V, Patel V, Tiwari M. In-silico screening and experimental validation reveal L-adrenaline as anti-biofilm molecule against biofilm-associated protein (bap) producing Acinetobacter baumannii. Int J Biol Macromol. 2018;107:1242–52.
Article
CAS
Google Scholar
Sun X, Ni Z, Tang J, Ding Y, Wang X, Li F. The abaI/abaR quorum sensing system effects on pathogenicity in Acinetobacter baumannii. Front Microbiol. 2021;12:1-19.
Khadke SK, Lee JH, Kim YG, Raj V, Lee J. Assessment of antibiofilm potencies of nervonic and oleic acid against Acinetobacter baumannii using in vitro and computational approaches. Biomedicines. 2021;9(9):1133.
Article
CAS
Google Scholar
Monem S, Furmanek-Blaszk B, Łupkowska A, Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Mechanisms protecting Acinetobacter baumannii against multiple stresses triggered by the host immune response, antibiotics and outside-host environment. Int J Mol Sci. 2020;21(15):5498.
Article
CAS
Google Scholar
Pourhajibagher M, Bahador A. Aptamer decorated emodin nanoparticles-assisted delivery of dermcidin-derived peptide DCD-1L: photoactive bio-theragnostic agent for enterococcus faecalis biofilm destruction. Photodiagn Photodyn Ther. 2022;39:103020.
Article
CAS
Google Scholar
Chan DI, Prenner EJ, Vogel HJ. Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta. 2006;1758(9):1184–202.
Article
CAS
Google Scholar
Koseki S, Nakamura N, Shiina T. Growth inhibition of listeria monocytogenes, salmonella enterica, and Escherichia coli O157:H7 by D-tryptophan as an incompatible solute. J Food Prot. 2015;78:819–24.
Article
CAS
Google Scholar
Khider D, Rossi-Fedele G, Fitzsimmons T, Vasilev K, Zilm PS. Disruption of enterococcus Faecalis biofilms using individual and plasma polymer encapsulated D-amino acids. Clin Oral Investig. 2021;25(5):3305–13.
Article
Google Scholar
She P, Chen L, Liu H, Zou Y, Luo Z, Koronfel A, et al. The effects of D-tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa. Microb Pathog. 2015;86:38–44.
Article
CAS
Google Scholar
Bi X, Wang C, Ma L, Sun Y, Shang D. Investigation of the role of tryptophan residues in cationic antimicrobial peptides to determine the mechanism of antimicrobial action. J Appl Microbiol. 2013 Sep;115(3):663–72.
Article
CAS
Google Scholar
Dias LM, Ferrisse TM, Medeiros KS, Cilli EM, Pavarina AC. Use of photodynamic therapy associated with antimicrobial peptides for bacterial control: a systematic review and Meta-analysis. Int J Mol Sci. 2022;23(6):3226.
Article
CAS
Google Scholar
Costley D, Nesbitt H, Ternan N, Dooley J, Huang YY, Hamblin MR, et al. Sonodynamic inactivation of gram-positive and gram-negative bacteria using a rose Bengal–antimicrobial peptide conjugate. Int J Antimicrob Agents. 2017;49(1):31–6.
Article
CAS
Google Scholar
Bekmukhametova A, Ruprai H, Hook JM, Mawad D, Houang J, Lauto A. Photodynamic therapy with nanoparticles to combat microbial infection and resistance. Nanoscale. 2020;12(41):21034–59.
Article
CAS
Google Scholar
Pang X, Li D, Zhu J, Cheng J, Liu G. Beyond antibiotics: photo/Sonodynamic approaches for bacterial Theranostics. Nanomicro Lett. 2020;12(1):144.
CAS
Google Scholar
Wang R, Liu Q, Gao A, Tang N, Zhang Q, Zhang A, et al. Recent developments of Sonodynamic therapy in antibacterial application. Nanoscale. 2022;14(36):12999-13017.
Dalvi S, Benedicenti S, Sălăgean T, Bordea IR, Hanna R. Effectiveness of antimicrobial photodynamic therapy in the treatment of periodontitis: a systematic review and meta-analysis of in vivo human randomized controlled clinical trials. Pharmaceutics. 2021;13(6):1–42.
Article
Google Scholar
Karner L, Drechsler S, Metzger M, Hacobian A, Schädl B, Slezak P, et al. Antimicrobial photodynamic therapy fighting polymicrobial infections–a journey from in vitro to in vivo. Photochem Photobiol Sci. 2020;19(10):1332–43.
Article
CAS
Google Scholar
Correia JH, Rodrigues JA, Pimenta S, Dong T, Yang Z. Photodynamic therapy review: principles, photosensitizers, applications, and future directions. Pharmaceutics. 2021;13(9):1–16.
Article
Google Scholar
Roy J, Pandey V, Gupta I, Shekhar H. Antibacterial sonodynamic therapy: current status and future perspectives. ACS Biomater Sci Eng. 2021;7(12):5326–38.
Article
CAS
Google Scholar
Dong X, Zeng Y, Zhang Z, Fu J, You L, He Y, et al. Hypericin-mediated photodynamic therapy for the treatment of cancer: a review. J Pharm Pharmacol. 2021;73(4):425–36.
Article
Google Scholar
Li D, Yang Y, Li D, Pan J, Chu C, Liu G. Organic sonosensitizers for sonodynamic therapy: from small molecules and nanoparticles toward clinical development. Small. 2021;17(42):2101976.
Article
CAS
Google Scholar
Polat E, Kang K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines. 2021;9(6):1–30.
Article
Google Scholar
Wu J, Sha J, Zhang C, Liu W, Zheng X, Wang P. Recent advances in theranostic agents based on natural products for photodynamic and sonodynamic therapy. View. 2020;1(3):1–19.
Article
Google Scholar
Plenagl N, Seitz BS, Duse L, Pinnapireddy SR, Jedelska J, Bruessler J, et al. Hypericin inclusion complexes encapsulated in liposomes for antimicrobial photodynamic therapy. Int J Pharm. 2019;570:1–8.
Article
Google Scholar
Alves F, Pavarina AC, Mima EG, McHale AP, Callan JF. Antimicrobial sonodynamic and photodynamic therapies against Candida albicans. Biofouling. 2018;34(4):357–67.
Article
CAS
Google Scholar
Zeisser-Labouèbe M, Lange N, Gurny R, Delie F. Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int J Pharm. 2006;326(1–2):174–81.
Article
Google Scholar
Rosato A, Carocci A, Catalano A, Clodoveo ML, Franchini C, Corbo F, et al. Elucidation of the synergistic action of Mentha Piperita essential oil with common antimicrobials. PLoS One. 2018;13(8):e0200902.
Article
Google Scholar
Pourhajibagher M, Bahador A. Enhanced reduction of polymicrobial biofilms on the orthodontic brackets and enamel surface remineralization using zeolite-zinc oxide nanoparticles-based antimicrobial photodynamic therapy. BMC Microbiol. 2021;21(1):1–8.
Article
Google Scholar
Pourhajibagher M, Boluki E, Chiniforush N, Pourakbari B, Farshadzadeh Z, Ghorbanzadeh R, et al. Modulation of virulence in Acinetobacter baumannii cells surviving photodynamic treatment with toluidine blue. Photodiagn Photodyn Ther. 2016;15:202–12.
Article
CAS
Google Scholar
Coffey BM, Anderson GG. Biofilm formation in the 96-well microtiter plate. Methods Mol Biol. 2014;1149:631–41.
Article
Google Scholar
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.
Article
CAS
Google Scholar
Shamsizadeh Z, Nikaeen M, Nasr Esfahani B, Mirhoseini SH, Hatamzadeh M, Hassanzadeh A. Detection of antibiotic resistant Acinetobacter baumannii in various hospital environments: potential sources for transmission of Acinetobacter infections. Environ Health Prev Med. 2017;22(1):1–7.
Article
Google Scholar
Jendželovská Z, Jendželovský R, Kucharova B, Fedoročko P. Hypericin in the light and in the dark: two sides of the same coin. Front Plant Sci. 2016;7:560–80.
Article
Google Scholar
Plenagl N, Seitz BS, Reddy Pinnapireddy S, Jedelska J, Bruessler J, Bakowsky U. Hypericin loaded liposomes for anti-microbial photodynamic therapy of gram-positive Bacteria. Phys Status Solidi (a). 2018;215(15):1700837.
Article
Google Scholar
Nafee N, Youssef A, El-Gowelli H, Asem H, Kandil S. Antibiotic-free nanotherapeutics: hypericin nanoparticles thereof for improved in vitro and in vivo antimicrobial photodynamic therapy and wound healing. Int J Pharm. 2013;454(1):249–58.
Article
CAS
Google Scholar
Sasaki H, Takaki A, Oshima A, Ishida A, Nagata S. Comparison of the function of L-and D-proline as compatible solute inEscherichia coli K-12 under high osmolarity. Ann Microbiol. 2007;57(2):265–8.
Article
CAS
Google Scholar
Manning JM, Merrifield NE, Jones WM, Gotschlich EC. Inhibition of bacterial growth by beta-chloro-d-alanine. Proc Natl Acad Sci U S A. 1974;71:417–21.
Article
CAS
Google Scholar
Shahjee HM, Banerjee K, Ahmad F. Comparative analysis of naturally occurring l-amino acid osmolytes and their d-isomers on protection of Escherichia coli against environmental stresses. J Biosci. 2002;27:515–20.
Article
CAS
Google Scholar
Caparrós M, Pisabarro AG, de Pedro MA. Effect of D-amino acids on structure and synthesis of peptidoglycan in Escherichia coli. J Bacteriol. 1992;174(17):5549–59.
Article
Google Scholar
Guo J, Qian Y, Sun B, Sun Z, Chen Z, Mao H, et al. Antibacterial amino acid-based poly (ionic liquid) membranes: effects of chirality, chemical bonding type, and application for MRSA skin infections. ACS Applied Bio Materials. 2019;2(10):4418–26.
Article
CAS
Google Scholar
Ye Z, Zhu X, Acosta S, Kumar D, Sang T, Aparicio C. Self-assembly dynamics and antimicrobial activity of all l- and d-amino acid enantiomers of a designer peptide. Nanoscale. 2018;11(1):266–75.
Article
Google Scholar
Kan K, Chen J, Kawamura S, Koseki S. Characteristics of d-tryptophan as an antibacterial agent: effect of sodium chloride concentration and temperature on Escherichia coli growth inhibition. J Food Prot. 2018;81(1):25–30.
Article
CAS
Google Scholar
Rumbo C, Vallejo JA, Cabral MP, Mart’ınez-Guitia’n M, P’erez A, Beceiro A, et al. Assessment of antivirulence activity of several d-amino acids against Acinetobacter baumannii and Pseudomonas aeruginosa. J Antimicrob Chemother. 2016;71:3473–81.
Article
CAS
Google Scholar
Elafify M, Chen J, Abdelkhalek A, Elsherbini M, Al-Ashmawy M, Koseki S. Combined d-tryptophan treatment and temperature stress exert antimicrobial activity against listeria monocytogenes in milk. J Food Prot. 2020;83(4):644–50.
Article
CAS
Google Scholar
Chen J, Kudo H, Kan K, Kawamura S, Koseki S. Growth-inhibitory effect of D-tryptophan on Vibrio spp. in shucked and live oysters. Appl Environ Microbiol. 2018;84(19):e01543–18.
Article
CAS
Google Scholar
Li H, Ye Y, Ling N, Wu Q, Zhang J. Inhibitory effects of d-tryptophan on biofilm development by the foodborne Cronobacter sakazakii. Int Dairy J. 2015;49:125–9.
Article
Google Scholar
Lee AN, Perussi JR, Hamblin MR. Electroporation enhances antimicrobial photodynamic therapy mediated by the hydrophobic photosensitizer, hypericin. Photodiagn Photodyn Ther. 2013;10(4):647–50.
Article
Google Scholar
Bernal C, Rodrigues JA, Guimarães AP, Ribeiro AO, de Oliveira KT, Imasato H, et al. Selective photoinactivation of C. albicans and C. Dubliniensis with hypericin. Laser Phys. 2011;21(1):245–9.
Article
CAS
Google Scholar
Macedo PD, Corbi ST, de Oliveira GJ, Perussi JR, Ribeiro AO, Marcantonio RA. Hypericin-glucamine antimicrobial photodynamic therapy in the progression of experimentally induced periodontal disease in rats. Photodiagn Photodyn Ther. 2019;25:43–9.
Article
CAS
Google Scholar
García I, Ballesta S, Gilaberte Y, Rezusta A, Pascual Á. Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms. Future Microbiol. 2015;10(3):347–56.
Article
Google Scholar
Montanha MC, Silva LL, Pangoni FB, Cesar GB, Gonçalves RS, Caetano W, et al. Response surface method optimization of a novel Hypericin formulation in P123 micelles for colorectal cancer and antimicrobial photodynamic therapy. J Photochem Photobiol B Biol. 2017;170:247–55.
Article
CAS
Google Scholar
Paz-Cristobal MP, Royo D, Rezusta A, Andrés-Ciriano E, Alejandre MC, Meis JF, et al. Photodynamic fungicidal efficacy of hypericin and dimethyl methylene blue against azole-resistant Candida albicans strains. Mycoses. 2014;57(1):35–42.
Article
CAS
Google Scholar
Barroso RA, Navarro R, Tim CR, de Paula RL, de Oliveira LD, Araki ÂT, et al. Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hypericum perforatum) photosensitizer: in vitro study. Lasers Med Sci. 2021;36(6):1235–40.
Article
Google Scholar
Pourhajibagher M, Bahador A. In vitro application of Sonodynamic antimicrobial chemotherapy as a Sonobactericidal therapeutic approach for bacterial infections: a systematic review and Meta-analysis. J Lasers Med Sci. 2020;11(Suppl 1):1–7.
Article
Google Scholar
Liu X, Yin H, Weng CX, Cai Y. Low-frequency ultrasound enhances antimicrobial activity of Colistin-vancomycin combination against Pan-resistant biofilm of Acinetobacter baumannii. Ultrasound Med Biol. 2016;42(8):1968–75.
Article
Google Scholar
Pourhajibagher M, Rahimi Esboei B, Hodjat M, Bahador A. Sonodynamic excitation of nanomicelle curcumin for eradication of Streptococcus mutans under sonodynamic antimicrobial chemotherapy: enhanced anti-caries activity of nanomicelle curcumin. Photodiagn Photodyn Ther. 2020;30:101780.
Article
CAS
Google Scholar
Alves F, Gomes Guimarães G, Mayumi Inada N, Pratavieira S, Salvador Bagnato V, Kurachi C. Strategies to improve the antimicrobial efficacy of photodynamic, Sonodynamic, and Sonophotodynamic therapies. Lasers Surg Med. 2021;53(8):1113–21.
Article
Google Scholar
Pourhajibagher M, Rokn AR, Barikani HR, Bahador A. Photo-sonodynamic antimicrobial chemotherapy via chitosan nanoparticles-indocyanine green against polymicrobial periopathogenic biofilms: ex vivo study on dental implants. Photodiagn Photodyn Ther. 2020;31:101834.
Article
CAS
Google Scholar
Li X, Gao L, Zheng L, Kou J, Zhu X, Jiang Y, et al. The efficacy and mechanism of apoptosis induction by hypericin-mediated sonodynamic therapy in THP-1 macrophages. Int J Nanomedicine. 2015;10:821.
Google Scholar
Li X, Zhang X, Zheng L, Kou J, Zhong Z, Jiang Y, et al. Hypericin-mediated sonodynamic therapy induces autophagy and decreases lipids in THP-1 macrophage by promoting ROS-dependent nuclear translocation of TFEB. Cell Death Dis. 2016;7(12):e2527.
Article
CAS
Google Scholar
Foglietta F, Canaparo R, Cossari S, Panzanelli P, Dosio F, Serpe L. Ultrasound triggers Hypericin activation leading to multifaceted anticancer activity. Pharmaceutics. 2022;14(5):1102.
Article
CAS
Google Scholar
Li X, Zhang X, Zheng L, Kou J, Zhong Z, Jiang Y, et al. Author correction: Hypericin-mediated sonodynamic therapy induces autophagy and decreases lipids in THP-1 macrophage by promoting ROS-dependent nuclear translocation of TFEB. Cell Death Dis. 2019;10(3):1–3.
Article
Google Scholar
Rengeng L, Qianyu Z, Yuehong L, Zhongzhong P, Libo L. Sonodynamic therapy, a treatment developing from photodynamic therapy. Photodiagn Photodyn Ther. 2017;19:159–66.
Article
Google Scholar
Meng S, Xu Z, Hong G, Zhao L, Zhao Z, Guo J, et al. Synthesis, characterization and in vitro photodynamic antimicrobial activity of basic amino acid–porphyrin conjugates. Eur J Med Chem. 2015;92:35–48.
Article
CAS
Google Scholar
Lim SH, Yam ML, Lam ML, Kamarulzaman FA, Samat N, Kiew LV, et al. Photodynamic characterization of amino acid conjugated 151-hydroxypurpurin-7-lactone for cancer treatment. Mol Pharm. 2014;11(9):3164–73.
Article
CAS
Google Scholar
Liu J, Ma W, Kou W, Shang L, Huang R, Zhao J. Poly-amino acids coated gold nanorod and doxorubicin for synergistic photodynamic therapy and chemotherapy in ovarian cancer cells. Biosci Rep. 2019;39(12):1-11.
Cheng H, Fan JH, Zhao LP, Fan GL, Zheng RR, Qiu XZ, et al. Chimeric peptide engineered exosomes for dual-stage light guided plasma membrane and nucleus targeted photodynamic therapy. Biomaterials. 2019;211:14–24.
Article
CAS
Google Scholar
Du E, Hu X, Roy S, Wang P, Deasy K, Mochizuki T, et al. Taurine-modified Ru (II)-complex targets cancerous brain cells for photodynamic therapy. Chem Comm. 2017;53(44):6033–6.
Article
CAS
Google Scholar
Tang J, Chen Y, Wang X, Ding Y, Sun X, Ni Z. Contribution of the AbaI/AbaR quorum sensing system to resistance and virulence of Acinetobacter baumannii clinical strains. Infect Drug Resist. 2020;13:4273–81.
Article
CAS
Google Scholar
Pourhajibagher M, Partoazar A, Alaeddini M, Etemad-Moghadam S, Bahador A. Photodisinfection effects of silver sulfadiazine nanoliposomes doped-curcumin on Acinetobacter baumannii: a mouse model. Nanomedicine. 2020;15(05):437–52.
Article
CAS
Google Scholar