Deketelaere S, Tyvaert L, Franca SC, Hofte M. Desirable traits of a good biocontrol agent against Verticillium wilt. Front Microbiol. 2017;8:1186.
Inderbitzin P, Subbarao KV. Verticillium systematics and evolution: how confusion impedes Verticillium wilt management and how to resolve it. Phytopathology. 2014;104(6):564–74.
Song R, Li J, Xie C, Jian W, Yang X. An overview of the molecular genetics of plant resistance to the Verticillium wilt pathogen Verticillium dahliae. Int J Mol Sci. 2020;21(3):1120.
Zhao P, Li P, Wu S, Zhou M, Zhi R, Gao H. Volatile organic compounds (VOCs) from Bacillus subtilis CF-3 reduce anthracnose and elicit active defense responses in harvested litchi fruits. AMB Express. 2019;9(1):119.
Jin L, Yang L, Li W, Xu D, Yang N, Li G, Wan P. Diversity and biocontrol potential of culturable endophytic fungi in cotton. Front Microbiol. 2021;12: 698930.
Article
Google Scholar
Zhang Y, Yang N, Zhao L, Zhu H, Tang C. Transcriptome analysis reveals the defense mechanism of cotton against Verticillium dahliae in the presence of the biocontrol fungus Chaetomium globosum CEF-082. BMC Plant Biol. 2020;20(1):89.
Hallmann J. Q-HA, Rodrıguez-Kabana R, Kloepper JW: Interactions between Meloidogyne incognita and endophytic bacteria in cotton and cucumber. Soil Biol Biochem. 1998;30:925–37.
Dalton DA, Kramer S, Azios N, Fusaro S, Cahill E, Kennedy C. Endophytic nitrogen fixation in dune grasses (Ammophila arenaria and Elymus mollis) from Oregon. FEMS Microbiol Ecol. 2004;49(3):469–79.
Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G. Endophytic bacteria in sunflower (Helianthus annuus L.): isolation, characterization, and production of jasmonates and abscisic acid in culture medium. Appl Microbiol Biotechnol. 2007;76(5):1145–52.
Hardoim PR, van Overbeek LS, Elsas JD. Properties of bacterial endophytes and their proposed role in plant growth. Trends Microbiol. 2008;16(10):463–71.
Article
CAS
Google Scholar
Sheng XCX, He L. Characteristics of an endophytic pyrene-degrading bacterium of Enterobacter sp. 12J1 from Allium macrostemon bunge. Int Biodeterior Biodegrad. 2008;62:88–95.
Brooks DS, Gonzalez CF, Appel DN, Filer TH. Evaluation of endophytic bacteria as potential biologicalcontrol agents for oak wilt. Biol Control. 1994;7:373–81.
Buren AV, Andre C, Ishmaru CA. Biological control of the bacterial ring rot pathogen by endophytic bacteria isolated from potato. Phytopathology. 1993;83:140–6.
Google Scholar
Zhao X, Zhou J, Tian R, Liu Y. Microbial volatile organic compounds: antifungal mechanisms, applications, and challenges. Front Microbiol. 2022;13: 922450.
Article
Google Scholar
Arrarte E, Garmendia G, Rossini C, Wisniewski M, Vero S. Volatile organic compounds produced by Antarctic strains of Candida sake play a role in the control of postharvest pathogens of apples. Biol Control. 2017;109:14–20.
Kanchiswamy CN, Malnoy M, Maffei ME. Chemical diversity of microbial volatiles and their potential for plant growth and productivity. Front Plant Sci. 2015;6:151.
Rybakova D, Rack-Wetzlinger U, Cernava T, Schaefer A, Schmuck M, Berg G. Aerial warfare: a volatile dialogue between the plant pathogen Verticillium longisporum and its antagonist Paenibacillus polymyxa. Front Plant Sci. 2017;8:1294.
Mulero-Aparicio A, Cernava T, Turra D, Schaefer A, Di Pietro A, Lopez-Escudero FJ, Trapero A, Berg G. The role of volatile organic compounds and rhizosphere competence in mode of action of the non-pathogenic Fusarium oxysporum FO12 toward Verticillium Wilt. Front Microbiol. 2019;1808. https://doi.org/10.3389/fmicb.2019.01808.
Mohamad OAA, Li L, Ma JB, Hatab S, Xu L, Guo JW, Rasulov BA, Liu YH, Hedlund BP, Li WJ. Evaluation of the antimicrobial activity of endophytic bacterial populations from Chinese traditional medicinal plant licorice and characterization of the bioactive secondary metabolites produced by Bacillus atrophaeus against Verticillium dahliae. Front Microbiol. 2018;9:924.
Xie S, Vallet M, Sun C, Kunert M, David A, Zhang X, Chen B, Lu X, Boland W, Shao Y. Biocontrol potential of a novel endophytic bacterium from mulberry (Morus) Tree. Front Bioeng Biotechnol. 2019;7:488.
Duran P, Thiergart T, Garrido-Oter R, Agler M, Kemen E, Schulze-Lefert P, Hacquard S. Microbial interkingdom interactions in roots promote Arabidopsis survival. Cell. 2018;175(4):973-983. e14.
Schlaeppi K, Dombrowski N,Oter RG, Ver Loren van Themaat E, Schulze-Lefert P: Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci USA. 2013;111(2):585-92.
Zhao P, Zhao YL, Jin Y, Zhang T, Guo HS. Colonization process of Arabidopsis thaliana roots by a green fluorescent protein-tagged isolate of Verticillium dahliae. Protein Cell. 2014;5(2):94–8.
Beckers B, Op De Beeck M, Weyens N, Boerjan W, Vangronsveld J: Structural variability and niche differentiation in the rhizosphere and endosphere bacterial microbiome of field-grown poplar trees. Microbiome. 2017;5(25). https://doi.org/10.1186/s40168-017-0241-2.
Gottel NR, Castro HF, Kerley M, Yang Z, Pelletier DA, Podar M, Karpinets T, Uberbacher E, Tuskan GA, Vilgalys R, Doktycz MJ, Schadt CW. Distinct microbial communities within the endosphere and rhizosphere of Populus deltoides roots across contrasting soil types. Appl Environ Microbiol. 2011;77(17):5934–44.
Edwards J, Johnson C, Santos-Medellin C, Lurie E, Podishetty NK, Bhatnagar S, Eisen JA, Sundaresan V. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc Natl Acad Sci USA. 2015;112(8):E911-920.
Article
CAS
Google Scholar
Zhang L, Li W, Tao Y, Zhao S, Yao L, Cai Y, Niu Q. Overexpression of the Key Virulence Factor 1,3–1,4-beta-d-Glucanase in the endophytic bacterium Bacillus halotolerans Y6 to improve Verticillium resistance in cotton. J Agric Food Chem. 2019;67(24):6828–36.
Wei F, Zhang Y, Shi Y, Feng H, Zhao L, Feng Z, Zhu H. Evaluation of the biocontrol potential of endophytic fungus Fusarium solani CEF559 against Verticillium dahliae in cotton plant. Biomed Res Int. 2019;2019:3187943.
Wei F, Zhao L, Xu X, Feng H, Shi Y, Deakin G, Feng Z, Zhu H. Cultivar-dependent variation of the cotton rhizosphere and endosphere microbiome under field conditions. Front Plant Sci. 2019;10:1659.
Article
Google Scholar
Wei F, Fan R, Dong H, Shang W, Xu X, Zhu H, Yang J, Hu X. Threshold microsclerotial inoculum for cotton verticillium wilt determined through wet-sieving and real-time quantitative PCR. Phytopathology. 2015;105(2):220–9.
Article
CAS
Google Scholar
Islam MT, Rahman M, Pandey P, Jha CK, Aeron A: “Bacillus spp.: a potential plant growth stimulator and biocontrol agent under hostile environmental conditions”, in Bacilli and Agrobiotechnology (Cham: Springer). 2016:91–111.
Sullivan RF, Holtman MA, Zylstra GJ, White JF, Kobayashi DY. Taxonomic positioning of two biological control agents for plant diseases as Lysobacter enzymogenes based on phylogenetic analysis of 16S rDNA, fatty acid composition and phenotypic characteristics. J Appl Microbiol. 2003;94(6):1079–86.
Niu G, Chater KF, Tian Y, Zhang J, Tan H. Specialised metabolites regulating antibiotic biosynthesis in Streptomyces spp. FEMS Microbiol Rev. 2016;40(4):554–73.
Prieto P, Navarro-Raya C, Valverde-Corredor A, Amyotte SG, Dobinson KF, Mercado-Blanco J. Colonization process of olive tissues by Verticillium dahliae and its in planta interaction with the biocontrol root endophyte Pseudomonas fluorescens PICF7. Microb Biotechnol. 2009;2(4):499–511.
Wheeler DL, Dung JKS, Johnson DA. From pathogen to endophyte: an endophytic population of Verticillium dahliae evolved from a sympatric pathogenic population. New Phytol. 2019;222(1):497–510.
Fujimoto A, Augusto F, Fill TP, Moretto RK, Kupper KC. Biocontrol of Phyllosticta citricarpa by Bacillus spp.: biological and chemical aspects of the microbial interaction. World J Microbiol Biotechnol. 2022;38(3):53.
Wheatley RE. The consequences of volatile organic compound mediated bacterial and fungal interactions. Antonie Van Leeuwenhoek. 2002;81(1–4):357–64.
Article
CAS
Google Scholar
Minerdi D, Bossi S, Gullino ML, Garibaldi A. Volatile organic compounds: a potential direct long-distance mechanism for antagonistic action of Fusarium oxysporum strain MSA 35. Environ Microbiol. 2009;11(4):844–54.
Gotor-Vila A, Teixido N, Di Francesco A, Usall J, Ugolini L, Torres R, Mari M. Antifungal effect of volatile organic compounds produced by Bacillus amyloliquefaciens CPA-8 against fruit pathogen decays of cherry. Food Microbiol. 2017;64:219–25.
Torres MJ, Brandan CP, Petroselli G, Erra-Balsells R, Audisio MC. Antagonistic effects of Bacillus subtilis subsp. subtilis and B. amyloliquefaciens against Macrophomina phaseolina: SEM study of fungal changes and UV-MALDI-TOF MS analysis of their bioactive compounds. Microbiol Res. 2016;182:31–9.
Solanki MK, Singh RK, Srivastava S, Kumar S, Kashyap PL, Srivastava AK. Characterization of antagonistic-potential of two Bacillus strains and their biocontrol activity against Rhizoctonia solani in tomato. J Basic Microbiol. 2015;55(1):82–90.
Callewaert L, Michiels CW. Lysozymes in the animal kingdom. J Biosci. 2010;35(1):127–60.
Article
CAS
Google Scholar
Rouchon CN, Harris J, Zubair-Nizami Z, Weinstein AJ, Roky M, Frank KL. The cationic antimicrobial peptide activity of lysozyme reduces viable Enterococcus faecalis cells in biofilms. Antimicrob Agents Chemother. 2022;66(5):e0233921.
Nagrale DT, Gawande SP. Shah V, Verma P, Hiremani NS, Prabhulinga T, Gokte-Narkhedkar N, Waghmare VN. Biocontrol potential of volatile organic compounds (VOCs) produced by cotton endophytic rhizobacteria against Macrophomina phaseolina. Eur J Plant Pathol. 2022;163:467–82.
Ebadzadsahrai G, Higgins Keppler EA, Soby SD, Bean HD. Inhibition of fungal growth and induction of a novel volatilome in response to Chromobacterium vaccinii volatile organic compounds. Front Microbiol. 2020;11:1035.
Wang K, Qin Z, Wu S, Zhao P, Zhen C, Gao H. Antifungal mechanism of volatile organic compounds produced by Bacillus subtilis CF-3 on Colletotrichum gloeosporioides assessed using omics technology. J Agric Food Chem. 2021;69(17):5267–78.
Ye X, Chen Y, Ma S, Yuan T, Wu Y, Li Y, Zhao Y, Chen S, Zhang Y, Li L, Li Z, Huang Y, Cao H, Cui Z. Biocidal effects of volatile organic compounds produced by the myxobacterium Corrallococcus sp. EGB against fungal phytopathogens. Food Microbiol. 2020;91:103502.
Yu J, Wu Y, He Z, Li M, Zhu K, Gao B. Diversity and antifungal activity of endophytic fungi associated with Camellia oleifera. Mycobiology. 2018;46(2):85–91.
Delgado N, Olivera M, Cadiz F, Bravo G, Montenegro I, Madrid A, Fuentealba C, Pedreschi R, Salgado E, Besoain X. Volatile Organic Compounds (VOCs) produced by Gluconobacter cerinus and Hanseniaspora osmophila displaying control effect against table grape-rot pathogens. Antibiotics. 2021;10(6):663.