Stephenson SL, Schnittler M, Novozhilov YK. Myxomycete diversity and distribution from the fossil record to the present. Biodivers Conserv. 2008;17:285–301.
Article
Google Scholar
Gilbert FA. Feeding habits of the swarm cells of the myxomycete Dictydiaethalium plumbeum. Am J Bot. 1928;15:123–31.
Article
Google Scholar
Feest A, Madelin MF. A method for the enumeration of myxomycetes in soils and its application to a wide range of soils. FEMS Microbiol Lett. 1985;31:103–9.
Article
Google Scholar
Foissner W. Soil protozoa as bioindicators: pros and cons, methods, diversity, representative examples. Agr Ecosyst Environ. 1999;74:95–112.
Article
Google Scholar
Stephenson SL. From morphological to molecular: studies of myxomycetes since the publication of the Mar-tin and Alexopoulos (1969) monograph. Fungal Divers. 2011;50:21–34.
Article
Google Scholar
Venkataramani R, Daniel L. Bacterial associates of the slime mould Physarum nicaraguense Macbr. Proc Plant Sci. 1987;97:469–73.
Article
Google Scholar
Sizov LR, Lysak LV, Gmoshinskii VI. Taxonomic Diversity of the Bacterial Community Associated with the Fruiting Bodies of the Myxomycete Lycogala epidendrum Fr (L.). Microbiology. 2021;90(3):336–42.
Article
CAS
Google Scholar
Lister A. On ingestion of food material by the swarm cells of Mycetozoa. Jour Linn Soc. 1889;25:435–41.
Article
Google Scholar
Gilber FA. Habits of the swarm cells of the myxomycete Dictydiaethalium plumbeum. Am J Bot. 1928;15:123–31.
Article
Google Scholar
Smart RF. The reactions of the swarm-cells of myxomycetes to nutrient materials. Mycologia. 1938;30:254–64.
Article
Google Scholar
Kerr NS. The growth of the myxamoebae of the true slime mould, Didymium nigripes, in axenic culture. J Gen Microbiol. 1963;32:409–16.
Article
CAS
Google Scholar
Ross IK. Pure Cultures of Some Myxomycetes. Bull Torrey Bot Club. 1964;91:23–31.
Article
Google Scholar
Schuster FL. A deoxyribose nucleic acid component in mitochondria of Didymium nigripes, a slime mold. Exp Cell Res. 1965;39:329–45.
Article
CAS
Google Scholar
Pinoy E. Rôle des bacteries dans le developpement des certains Myxomycètes. Ann Inst Pasteur. 1907;21(622–56):686–700.
Google Scholar
Vouk V. Die lebensgemeinschaften der Bakterien mit einigen höheren und niederen Pflanzen. Naturwiss. 1913;4:81–7.
Article
Google Scholar
Skupienski FX. Recherches sur le cycle évolutif des certains myxomycètes. Paris. 1920.
Raper KB. Growth and development of Dictyostelium discoideum with different bacterial associates. Jour Agr Res. 1937;55:289–316.
Google Scholar
Cohen AL. Nutrition of the Myxomycetes I. Pure culture and two membered culture of myxomycete plasmodia. Bot Gaz. 1939;101:243–75.
Article
Google Scholar
Cohen AL. Nutrition of the myxomycetes. II. relations between plasmodia, bacteria, and substrate in two-membered culture. Bot Gaz. 1941;103:205–44.
Article
CAS
Google Scholar
Watanabe A. Über die Bedeutung der Nährbakterien für die Entwicklung der Myxomyceten-Plasmodien. Bot Mag Tokyo. 1932;46:247–55.
Article
Google Scholar
Kalyanasundaram I. A positive ecological role for tropical myxomycetes in association with bacteria. Sys Geogr Pl. 2004;74:239–42.
Google Scholar
Gray WD, Alexopoulos CJ. Biology of myxomycetes. New York: The Ronald Press Company; 1968.
Google Scholar
Kutschera U, Hoppe T. Plasmodial slime molds and the evolution of microbial husbandry. Theor Biosci. 2019;138(1):127–32.
Article
Google Scholar
Ainsworth TD, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M, Gates RD, Padilla-Gamiño JL, Spalding HL, Smith C, Woolsey ES, Bourne DG, Bongaerts P, Hoegh-Guldberg O, Leggat W. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74.
Article
CAS
Google Scholar
Martin GW, Alexopoulos CJ. The Myxomycetes. Iowa City: University of Iowa Press; 1969. p. 175–6.
Google Scholar
Liu P, Wang Q, Li Y. Spore-to-spore agar culture of the myxomycete Physarum globuliferum. Arch Microbiol. 2010;192:97–101.
Article
CAS
Google Scholar
Vasileiadis S, Puglisi E, Arena M, Cappa F, Cocconcelli PS, Trevisan M. Soil bacterial diversity screening using single 16S rRNA gene V regions coupled with multi-million read generating sequencing technologies. PLoS ONE. 2012;7:e42671.
Article
CAS
Google Scholar
Magoč T, Salzberg SL. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.
Article
Google Scholar
Bolger AM, Lohse M, Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–20.
Article
CAS
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27:2194–200.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–6.
Article
CAS
Google Scholar
Edgar RC. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10:996–8.
Article
CAS
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–6.
Article
CAS
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–7.
Article
CAS
Google Scholar
Ward T, Larson J, Meulemans J, Hillmann B, Lynch J, Sidiropoulos D, Spear J, Caporaso G, Blekhman R, Knight R, Fink R, Knights D. BugBase predicts organism-level microbiome phenotypes. bioRxiv. 2017; 133462. https://doi.org/10.1101/133462.
Douglas GM, Maffei VJ, Zaneveld JR, Yurgel SN, Brown JR, Taylor CM, Huttenhower C, Langille MGI. PICRUSt2 for prediction of metagenome functions. Nat Biotechnol. 2020;38:685–8.
Article
CAS
Google Scholar
DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–72.
Article
CAS
Google Scholar
Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5.
Article
CAS
Google Scholar