Janda JM, Abbott SL, McIver CJ. Plesiomonas shigelloides Revisited. Clin Microbiol Rev. 2016;29(2):349–74.
Article
CAS
Google Scholar
Mandal BK, Whale K, Morson BC. Acute colitis due to Plesiomonas shigelloides. Br Med J (Clin Res Ed). 1982;285(6354):1539–40.
Article
CAS
Google Scholar
McNeeley D, Ivy P, Craft JC, Cohen I. Plesiomonas: biology of the organism and diseases in children. Pediatr Infect Dis. 1984;3(2):176–81.
Article
CAS
Google Scholar
Tsukamoto T, Kinoshita Y, Shimada T, Sakazaki R. Two epidemics of diarrhoeal disease possibly caused by Plesiomonas shigelloides. J Hyg (Lond). 1978;80(2):275–80.
Article
CAS
Google Scholar
Billiet J, Kuypers S, Van Lierde S, Verhaegen J. Plesiomonas shigelloides meningitis and septicaemia in a neonate: report of a case and review of the literature. J Infect. 1989;19(3):267–71.
Article
CAS
Google Scholar
Fischer K, Chakraborty T, Hof H, Kirchner T, Wamsler O. Pseudoappendicitis caused by Plesiomonas shigelloides. J Clin Microbiol. 1988;26(12):2675–7.
Article
CAS
Google Scholar
Pennycook KM, Pennycook KB, McCready TA, Kazanowski D. Severe cellulitis and bacteremia caused by Plesiomonas shigelloides following a traumatic freshwater injury. IDCases. 2019;19: e00637.
Article
Google Scholar
Yu C, Yang F, Xue D, Wang X, Chen H. The Regulatory Functions of σ54 Factor in Phytopathogenic Bacteria. Int J Mol Sci. 2022;22(23):12692.
Article
Google Scholar
Riordan JT, Mitra A. Regulation of Escherichia coli Pathogenesis by Alternative Sigma Factor N. EcoSal Plus. 2017;7(2).
Reitzer L, Schneider BL. Metabolic context and possible physiological themes of sigma(54)-dependent genes in Escherichia coli. Microbiol Mol Biol Rev. 2001;65(3):422–44 table of contents.
Article
CAS
Google Scholar
Hartman CE, Samuels DJ, Karls AC. Modulating Salmonella Typhimurium’s response to a changing environment through bacterial enhancer-binding proteins and the RpoN regulon. Front Mol Biosci. 2016;3:41.
Köhler T, Harayama S, Ramos JL, Timmis KN. Involvement of Pseudomonas putida RpoN sigma factor in regulation of various metabolic functions. J Bacteriol. 1989;171(8):4326–33.
Article
Google Scholar
Herrera MC, Duque E, Rodríguez-Herva JJ, Fernández-Escamilla AM, Ramos JL. Identification and characterization of the PhhR regulon in Pseudomonas putida. Environ Microbiol. 2010;12(6):1427–38.
CAS
Google Scholar
Viducic D, Murakami K, Amoh T, Ono T, Miyake Y. RpoN promotes Pseudomonas aeruginosa survival in the presence of tobramycin. Front Microbiol. 2017;8:839.
Article
Google Scholar
Viducic D, Ono T, Murakami K, Katakami M, Susilowati H, Miyake Y. rpoN gene of Pseudomonas aeruginosa alters its susceptibility to quinolones and carbapenems. Antimicrob Agents Chemother. 2007;51(4):1455–62.
Article
CAS
Google Scholar
Viducic D, Murakami K, Amoh T, Ono T, Miyake Y. RpoN modulates Carbapenem tolerance in pseudomonas aeruginosa through pseudomonas quinolone signal and PqsE. Antimicrob Agents Chemother. 2016;60(10):5752–64.
Article
CAS
Google Scholar
Hao B, Mo ZL, Xiao P, Pan HJ, Lan X, Li GY. Role of alternative sigma factor 54 (RpoN) from Vibrio anguillarum M3 in protease secretion, exopolysaccharide production, biofilm formation, and virulence. Appl Microbiol Biotechnol. 2013;97(6):2575–85.
Article
CAS
Google Scholar
Shang L, Yan Y, Zhan Y, Ke X, Shao Y, Liu Y, Yang H, Wang S, Dai S, Lu J, Yan N, Yang Z, Lu W, Liu Z, Chen S, Elmerich C, Lin M. A regulatory network involving Rpo, Gac and Rsm for nitrogen-fixing biofilm formation by Pseudomonas stutzeri. NPJ Biofilms Microbiomes. 2021;7(1):54.
Article
CAS
Google Scholar
Cai Z, Liu Y, Chen Y, Yam JK, Chew SC, Chua SL, Wang K, Givskov M, Yang L. RpoN regulates virulence factors of pseudomonas aeruginosa via modulating the PqsR quorum sensing regulator. Int J Mol Sci. 2015;16(12):28311–9.
Article
CAS
Google Scholar
Tague JG, Hong J, Kalburge SS, Boyd EF. Regulatory small RNA Qrr2 Is expressed independently of sigma factor-54 and can function as the Sole Qrr small RNA To control quorum sensing in vibrio parahaemolyticus. J Bacteriol. 2022;204(1): e0035021.
Article
CAS
Google Scholar
Feng L, Bi W, Chen S, Zhu J, Liu X. Regulatory function of sigma factors RpoS/RpoN in adaptation and spoilage potential of Shewanella baltica. Food Microbiol. 2021;97: 103755.
Article
CAS
Google Scholar
Zhang JJ, Hu WL, Yang Y, Li H, Picardeau M, Yan J, Yang XF. The sigma factor σ54 is required for the long-term survival of Leptospira biflexa in water. Mol Microbiol. 2018. https://doi.org/10.1111/mmi.13967.
Article
Google Scholar
Xu T, Yu M, Liu J, Lin H, Liang J, Zhang XH. Role of RpoN from Labrenzia aggregata LZB033 (Rhodobacteraceae) in formation of flagella and biofilms, motility, and environmental adaptation. Appl Environ Microbiol. 2019;85(7):e02844-e2918.
Article
CAS
Google Scholar
Sapi E, Theophilus PA, Pham TV, Burugu D, Luecke DF. Effect of RpoN, RpoS and LuxS pathways on the biofilm formation and antibiotic sensitivity of borrelia burgdorferi. Eur J Microbiol Immunol (Bp). 2016;6(4):272–86.
Article
CAS
Google Scholar
Merino S, Aquilini E, Fulton KM, Twine SM, Tomás JM. The polar and lateral flagella from Plesiomonas shigelloides are glycosylated with legionaminic acid. Front Microbiol. 2015;6:649.
Article
Google Scholar
Klose KE, Mekalanos JJ. Distinct roles of an alternative sigma factor during both free-swimming and colonizing phases of the Vibrio cholerae pathogenic cycle. Mol Microbiol. 1998;28(3):501–20.
Article
CAS
Google Scholar
Correa NE, Peng F, Klose KE. Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy. J Bacteriol. 2005;187(18):6324–32.
Article
CAS
Google Scholar
Prouty MG, Correa NE, Klose KE. The novel sigma54- and sigma28-dependent flagellar gene transcription hierarchy of Vibrio cholerae. Mol Microbiol. 2001;39(6):1595–609.
Article
CAS
Google Scholar
Stewart BJ, McCarter LL. Lateral flagellar gene system of Vibrio parahaemolyticus. J Bacteriol. 2003;185(15):4508–18.
Article
CAS
Google Scholar
Petersen BD, Liu MS, Podicheti R, Yang AY, Simpson CA, Hemmerich C, Rusch DB, van Kessel JC. The polar flagellar transcriptional regulatory network in Vibrio campbellii deviates from canonical vibrio species. J Bacteriol. 2021;203(20): e0027621.
Article
Google Scholar
Wilhelms M, Gonzalez V, Tomás JM, Merino S. Aeromonas hydrophila lateral flagellar gene transcriptional hierarchy. J Bacteriol. 2013;195(7):1436–45.
Article
CAS
Google Scholar
Wilhelms M, Molero R, Shaw JG, Tomás JM, Merino S. Transcriptional hierarchy of Aeromonas hydrophila polar-flagellum genes. J Bacteriol. 2011;193(19):5179–90.
Article
CAS
Google Scholar
Jyot J, Dasgupta N, Ramphal R. FleQ, the major flagellar gene regulator in Pseudomonas aeruginosa, binds to enhancer sites located either upstream or atypically downstream of the RpoN binding site. J Bacteriol. 2002;184(19):5251–60.
Article
CAS
Google Scholar
Dasgupta N, Wolfgang MC, Goodman AL, Arora SK, Jyot J, Lory S, Ramphal R. A four-tiered transcriptional regulatory circuit controls flagellar biogenesis in pseudomonas aeruginosa. Mol Microbiol. 2003;50(3):809–24.
Article
CAS
Google Scholar
Wu J, Newton A. Regulation of the Caulobacter flagellar gene hierarchy; not just for motility. Mol Microbiol. 1997;24(2):233–9.
Article
CAS
Google Scholar
Tsang J, Hoover TR. Basal body structures differentially affect transcription of RpoN- and FliA-dependent flagellar genes in helicobacter pylori. J Bacteriol. 2015;197(11):1921–30.
Article
CAS
Google Scholar
Poggio S, Osorio A, Dreyfus G, Camarena L. The flagellar hierarchy of Rhodobacter sphaeroides is controlled by the concerted action of two enhancer-binding proteins. Mol Microbiol. 2005;58(4):969–83.
Article
CAS
Google Scholar
Zhao K, Liu M, Burgess RR. Promoter and regulon analysis of nitrogen assimilation factor, sigma54, reveal alternative strategy for E. coli MG1655 flagellar biosynthesis. Nucleic Acids Res. 2010;38(4):1273–83.
Article
CAS
Google Scholar
Dong T, Yu R, Schellhorn H. Antagonistic regulation of motility and transcriptome expression by RpoN and RpoS in Escherichia coli. Mol Microbiol. 2011;79(2):375–86.
Article
CAS
Google Scholar
Coulthurst SJ. The Type VI secretion system - a widespread and versatile cell targeting system. Res Microbiol. 2013;164(6):640–54.
Article
CAS
Google Scholar
Joshi A, Kostiuk B, Rogers A, Teschler J, Pukatzki S, Yildiz FH. Rules of engagement: the type vi secretion system in vibrio cholerae. Trends Microbiol. 2017;25(4):267–79.
Article
CAS
Google Scholar
Hernandez RE, Gallegos-Monterrosa R, Coulthurst SJ. Type VI secretion system effector proteins: effective weapons for bacterial competitiveness. Cell Microbiol. 2020;22(9): e13241.
Article
CAS
Google Scholar
Cianfanelli FR, Monlezun L, Coulthurst SJ. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol. 2016;24(1):51–62.
Article
CAS
Google Scholar
Bönemann G, Pietrosiuk A, Diemand A, Zentgraf H, Mogk A. Remodelling of VipA/VipB tubules by ClpV-mediated threading is crucial for type VI protein secretion. EMBO J. 2009;28(4):315–25.
Article
Google Scholar
Kitaoka M, Miyata ST, Brooks TM, Unterweger D, Pukatzki S. VasH is a transcriptional regulator of the type VI secretion system functional in endemic and pandemic Vibrio cholerae. J Bacteriol. 2011;193(23):6471–82.
Article
CAS
Google Scholar
Metzger LC, Stutzmann S, Scrignari T, Van der Henst C, Matthey N, Blokesch M. Independent regulation of type VI secretion in Vibrio cholerae by TfoX and TfoY. Cell Rep. 2016;15(5):951–8.
Article
CAS
Google Scholar
Naskar S, Hohl M, Tassinari M, Low HH. The structure and mechanism of the bacterial type II secretion system. Mol Microbiol. 2021;115(3):412–24.
Article
CAS
Google Scholar
Lin Y, Jiao Y, Yuan Y, Zhou Z, Zheng Y, Xiao J, Li C, Chen Z, Cao P. Propionibacterium acnes induces intervertebral disc degeneration by promoting nucleus pulposus cell apoptosis via the TLR2/JNK/mitochondrial-mediated pathway. Emerg Microbes Infect. 2018;7(1):1.
Google Scholar
Tomás A, Lery L, Regueiro V, Pérez-Gutiérrez C, Martínez V, Moranta D, Llobet E, González-Nicolau M, Insua JL, Tomas JM, Sansonetti PJ, Tournebize R, Bengoechea JA. Functional genomic screen identifies Klebsiella pneumoniae factors implicated in blocking nuclear factor κB (NF-κB) signaling. J Biol Chem. 2015;290(27):16678–97.
Article
Google Scholar
Jyot J, Balloy V, Jouvion G, Verma A, Touqui L, Huerre M, Chignard M, Ramphal R. Type II secretion system of Pseudomonas aeruginosa: in vivo evidence of a significant role in death due to lung infection. J Infect Dis. 2011;203(10):1369–77.
Article
CAS
Google Scholar
Overbye LJ, Sandkvist M, Bagdasarian M. Genes required for extracellular secretion of enterotoxin are clustered in Vibrio cholerae. Gene. 1993;132(1):101–6.
Article
CAS
Google Scholar
Connell TD, Holmes RK. Mutational analysis of the ganglioside-binding activity of the type II Escherichia coli heat-labile enterotoxin LT-IIb. Mol Microbiol. 1995;16(1):21–31.
Article
CAS
Google Scholar
Cianciotto NP. Many substrates and functions of type II secretion: lessons learned from legionella pneumophila. Future Microbiol. 2009;4(7):797–805.
Article
Google Scholar
Shutinoski B, Schmidt MA, Heusipp G. Transcriptional regulation of the Yts1 type II secretion system of Yersinia enterocolitica and identification of secretion substrates. Mol Microbiol. 2010;75(3):676–91.
Article
CAS
Google Scholar
Sikora AE, Zielke RA, Lawrence DA, Andrews PC, Sandkvist M. Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases. J Biol Chem. 2011;286(19):16555–66.
Article
CAS
Google Scholar
Cianciotto NP, White RC. Expanding role of type II secretion in bacterial pathogenesis and beyond. Infect Immun. 2017;85(5):e00014-17.
Article
CAS
Google Scholar
Nivaskumar M, Francetic O. Type II secretion system: a magic beanstalk or a protein escalator. Biochim Biophys Acta. 2014;1843(8):1568–77.
Article
CAS
Google Scholar
Pugsley AP. The complete general secretory pathway in gram-negative bacteria. Microbiol Rev. 1993;57(1):50–108.
Article
CAS
Google Scholar
Maciejewska A, Bednarczyk B, Lugowski C, Lukasiewicz J. Structural studies of the Lipopolysaccharide Isolated from Plesiomonas shigelloides O22:H3 (CNCTC 90/89). Int J Mol Sci. 2020;21(18):6788.
Article
CAS
Google Scholar
Bittner M, Saldías S, Altamirano F, Valvano MA, Contreras I. RpoS and RpoN are involved in the growth-dependent regulation of rfaH transcription and O antigen expression in Salmonella enterica serovar Typhi. Microb Pathog. 2004;36(1):19–24.
Article
CAS
Google Scholar
Wang K, Liu E, Song S, Wang X, Zhu Y, Ye J, Zhang H. Characterization of Edwardsiella tarda rpoN: roles in σ(70) family regulation, growth, stress adaption and virulence toward fish. Arch Microbiol. 2012;194(6):493–504.
Article
CAS
Google Scholar
Zhu L, Gong T, Wood TL, Yamasaki R, Wood TK. σ54 -Dependent regulator DVU2956 switches Desulfovibrio vulgaris from biofilm formation to planktonic growth and regulates hydrogen sulfide production. Environ Microbiol. 2019;21(10):3564–76.
Article
CAS
Google Scholar
Schulz T, Rydzewski K, Schunder E, Holland G, Bannert N, Heuner K. FliA expression analysis and influence of the regulatory proteins RpoN, FleQ and FliA on virulence and in vivo fitness in Legionella pneumophila. Arch Microbiol. 2012;194(12):977–89.
Article
CAS
Google Scholar
Lin HH, Filloux A, Lai EM. Role of recipient susceptibility factors during contact-dependent interbacterial competition. Front Microbiol. 2020;11: 603652.
Article
Google Scholar
Dong TG, Mekalanos JJ. Characterization of the RpoN regulon reveals differential regulation of T6SS and new flagellar operons in Vibrio cholerae O37 strain V52. Nucleic Acids Res. 2012;40(16):7766–75.
Article
CAS
Google Scholar
Wang Y, Li Y, Wang J, Wang X. FleQ regulates both the type VI secretion system and flagella in pseudomonas putida. Biotechnol Appl Biochem. 2018;65(3):419–27.
Article
CAS
Google Scholar
Sana TG, Soscia C, Tonglet CM, Garvis S, Bleves S. Divergent control of two type VI secretion systems by RpoN in pseudomonas aeruginosa. PLoS ONE. 2013;8(10): e76030.
Article
CAS
Google Scholar
Sheng L, Gu D, Wang Q, Liu Q, Zhang Y. Quorum sensing and alternative sigma factor RpoN regulate type VI secretion system I (T6SSVA1) in fish pathogen Vibrio alginolyticus. Arch Microbiol. 2012;194(5):379–90.
Article
CAS
Google Scholar
Mahmud AKMF, Nilsson K, Fahlgren A, Navais R, Choudhury R, Avican K, Fällman M. Genome-Scale Mapping Reveals Complex Regulatory Activities of RpoN in Yersinia pseudotuberculosis. mSystems. 2020;5(6):e01006-20.
Article
CAS
Google Scholar
Arnold WK, Savage CR, Lethbridge KG, Smith TC 2nd, Brissette CA, Seshu J, Stevenson B. Transcriptomic insights on the virulence-controlling CsrA, BadR, RpoN, and RpoS regulatory networks in the Lyme disease spirochete. PLoS ONE. 2018;13(8): e0203286.
Article
Google Scholar
Shao X, Zhang X, Zhang Y, Zhu M, Yang P, Yuan J, Xie Y, Zhou T, Wang W, Chen S, Liang H, Deng X. RpoN-dependent direct regulation of quorum sensing and the type VI secretion system in pseudomonas aeruginosa PAO1. J Bacteriol. 2018;200(16):e00205-e218.
Article
CAS
Google Scholar
Hutcheson SW, Bretz J, Sussan T, Jin S, Pak K. Enhancer-binding proteins HrpR and HrpS interact to regulate hrp-encoded type III protein secretion in pseudomonas syringae strains. J Bacteriol. 2001;183(19):5589–98.
Article
CAS
Google Scholar
Jovanovic M, James EH, Burrows PC, Rego FG, Buck M, Schumacher J. Regulation of the co-evolved HrpR and HrpS AAA+ proteins required for pseudomonas syringae pathogenicity. Nat Commun. 2011;2:177.
Article
Google Scholar
Lee JH, Sundin GW, Zhao Y. Identification of the HrpS binding site in the hrpL promoter and effect of the RpoN binding site of HrpS on the regulation of the type III secretion system in Erwinia amylovora. Mol Plant Pathol. 2016;17(5):691–702.
Article
CAS
Google Scholar
Ramos LS, Lehman BL, Sinn JP, Pfeufer EE, Halbrendt NO, McNellis TW. The fire blight pathogen Erwinia amylovora requires the rpoN gene for pathogenicity in apple. Mol Plant Pathol. 2013;14(8):838–43.
Article
CAS
Google Scholar
Yi X, Yamazaki A, Biddle E, Zeng Q, Yang CH. Genetic analysis of two phosphodiesterases reveals cyclic diguanylate regulation of virulence factors in Dickeya dadantii. Mol Microbiol. 2010;77(3):787–800.
Article
CAS
Google Scholar
Xi D, Jing F, Liu Q, Cao B. Plesiomonas shigelloides sipD mutant, generated by an efficient gene transfer system, is less invasive. J Microbiol Methods. 2019;159:75–80.
Article
CAS
Google Scholar
Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000;28(1):27–30.
Article
CAS
Google Scholar
Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019;28(11):1947–51.
Article
CAS
Google Scholar
Kanehisa M, Furumichi M, Sato Y, Ishiguro-Watanabe M, Tanabe M. KEGG: integrating viruses and cellular organisms. Nucleic Acids Res. 2021;49(D1):D545–51.
Article
CAS
Google Scholar
Jiang L, Feng L, Yang B, Zhang W, Wang P, Jiang X, Wang L. Signal transduction pathway mediated by the novel regulator LoiA for low oxygen tension induced salmonella typhimurium invasion. PLoS Pathog. 2017;13(6): e1006429.
Article
Google Scholar
Wilhelms M, Fulton KM, Twine SM, Tomás JM, Merino S. Differential glycosylation of polar and lateral flagellins in Aeromonas hydrophila AH-3. J Biol Chem. 2012;287(33):27851–62.
Article
CAS
Google Scholar
Evans MR, Fink RC, Vazquez-Torres A, Porwollik S, Jones-Carson J, McClelland M, Hassan HM. Analysis of the ArcA regulon in anaerobically grown Salmonella enterica sv. Typhimurium. BMC Microbiol. 2011;11:58.
Article
CAS
Google Scholar
Li Y, Yan J, Guo X, Wang X, Liu F, Cao B. The global regulators ArcA and CytR collaboratively modulate vibrio cholerae motility. BMC Microbiol. 2022;22(1):22.
Article
Google Scholar
Yan J, Li Y, Guo X, Wang X, Liu F, Li A, Cao B. The effect of ArcA on the growth, motility, biofilm formation, and virulence of Plesiomonas shigelloides. BMC Microbiol. 2021;21(1):266.
Article
CAS
Google Scholar
Borgeaud S, Metzger LC, Scrignari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science. 2015;347(6217):63–7.
Article
CAS
Google Scholar
Schubert RH, Holz-Bremer A. Cell adhesion of Plesiomonas shigelloides. Zentralbl Hyg Umweltmed. 1999;202(5):383–8.
Article
CAS
Google Scholar
Yang S, Xi D, Wang X, Li Y, Li Y, Yan J, Cao B. Vibrio cholerae VC1741 (PsrA) enhances the colonization of the pathogen in infant mice intestines in the presence of the long-chain fatty acid, oleic acid. Microb Pathog. 2020;147: 104443.
Article
CAS
Google Scholar
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–9.
Article
CAS
Google Scholar