Bonnet SI, Binetruy F, Hernández-Jarguín AM, Duron O. The Tick Microbiome: Why Non-pathogenic Microorganisms Matter in Tick Biology and Pathogen Transmission. Front Cell Infect Microbiol. 2017;7:236. https://doi.org/10.3389/fcimb.2017.00236.
Article
Google Scholar
Burgdorfer W, Hayes S, Mavros A. Non-pathogenic rickettsiae in Dermacentor andersoni: a limiting factor for the distribution of Rickettsia rickettsii. In: Burgdorfer AA, Anacker RL, editors. Rickettsia and Rickettsial Disease. New York: Academic; 1981. p. 585–94.
Google Scholar
Chauvin A, Moreau E, Bonnet S, Plantard O, Malandrin L. Babesia and its hosts: adaptation to long-lasting interactions as a way to achieve efficient transmission. Vet Res. 2009;40:37. https://doi.org/10.1051/vetres/2009020.
Article
CAS
Google Scholar
Ravi A, Ereqat S, Al-Jawabreh A, Abdeen Z, Shamma O, Hall H, Pallen M, Nasereddin A. Metagenomic profiling of ticks: Identification of novel rickettsial genomes and detection of tick-borne canine parvovirus. PLoS Negl Trop Dis. 2019;13(1):1–19.
Article
CAS
Google Scholar
Greay TL, Gofton AW, Paparini A, Ryan UM, Oskam CL, Irwin PJ. Recent insights into the tick microbiome gained through next-generation sequencing. Parasit Vectors. 2018;11(1):1–14.
Article
Google Scholar
Rar V, Livanova N, Tkachev S, Kaverina G, Tikunov A, Sabitova Y, Igolkina Y, Panov V, Livanov S, Fomenko N, Babkin I, Tikunova N. Detection and genetic characterization of a wide range of infectious agents in Ixodes pavlovskyi ticks in Western Siberia. Russia Parasites and Vectors. 2017;10(1):1–24.
Google Scholar
Filippova NA. Ixodid ticks of the subfamily Ixodinae. Fauna of the USSR. Arachnida. Leningrad: Publishing House Nauka; 1977.
Google Scholar
Bouquet J, Melgar M, Swei A, Delwart E, Lane RS, Chiu CY. Metagenomic-based Surveillance of Pacific Coast tick Dermacentor occidentalis Identifies Two Novel Bunyaviruses and an Emerging Human Ricksettsial Pathogen. Sci Rep. 2017;7(1):1–10. https://doi.org/10.1038/s41598-017-12047-6.
Article
CAS
Google Scholar
Nakao R, Abe T, Nijhof A, Yamamoto S, Jongejan F, Ikemura T, Sugimoto C. A novel approach, based on BLSOMs (Batch Learning Self-Organizing Maps), to the microbiome analysis of ticks. ISME J. 2013;7(5):1003–15. https://doi.org/10.1038/ismej.2012.171.
Article
CAS
Google Scholar
Barros-Battesti, D., Arzua, M., Bechara, H. Carrapato de Importância Medico-Veterinaria da Região Neotropical: Um Guia Ilustrado para Identificação de Espécies [Ticks of Medical-Veterinary Importance in the Neotropical Region: An Illustrated Guide for Species Identification]. 10ma edição. Sao Paulo: Butantan Publicação. p. 223. 2006.
Labruna MB, Whitworth T, Bouyer DH, McBride JW, Camargo LMA, Camargo EP, et al. Rickettsia bellii and Rickettsi amblyommii in Amblyomma ticks from the state of Rondônia, Western Amazon. Brazil J Med Entomol. 2004;41:1073–81.
Article
Google Scholar
Aguirre A. Rodrigues V, Nunes da Costa I, Garcia M, Guimaraes B, Andreotti R, Fernandes J. Amblyomma scalpturatum Neumann, 1906 (Acari: Ixodidae): confirmation in Acre State, Brazil, and description of parasitism in a human. Braz. J. Vet. Parasitol. 2019: 1(1):1–6
Barbieri A, Romero L, Labruna M. Rickettsia bellii infecting Amblyomma sabanerae ticks in El Salvador. Pathogens and Global Health. 2012;106(3):188–9.
Article
Google Scholar
-Sánchez-Montes S, Ballados-Gónzales G, Hernández-Velasco A, Zazueta-Islas H, Solis-Cortés M, et. Al. Molecular Confirmation of Rickettsia parkeri in Amblyomma ovale Ticks, Veracruz, Mexico. Emerging Infectious Diseases • 25, (12),2019:2315–23–17
Bitencourth K, Amorim M, de Oliveira SV, Voloch CM, Gazêta GS. Genetic diversity, population structure and rickettsias in Amblyomma ovale in areas of epidemiological interest for spotted fever in Brazil. Med Vet Entomol. 2019;33:256–68. https://doi.org/10.1111/mve.12363.
Article
CAS
Google Scholar
QIAGEN. Gentra, Puregene (QIAGEN GROUP), 2007–2010. https://www.qiagen.com/us/shop/sample-technologies/dna/genomic-dna/gentra-puregene-tissue-kit/#orderinginformation. Accessed 9 Jun 2017.
Sperling JL, et al. Comparison of bacterial 16S rRNA variable regions for microbiome surveys of ticks. Ticks Tick Borne Dis. 2017;8:453–61.
Article
Google Scholar
Caporaso J, Lauber C, Walters W, Berg-Lyons D, Lozupone C, Turnbaugh P, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci. 2011;108(Supplement 1):4516–22.
Article
CAS
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–200.
Article
CAS
Google Scholar
Glassing A, Dowd SE, Galandiuk S, Davis B, Jorden JR, Chiodini RJ. Changes in 16S RNA gene microbial community profiling by concentration of prokaryotic DNA. J Microbiol Methods. 2015;119: 239242.
Article
Google Scholar
Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Caporaso JG. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10(1):57–9.
Article
CAS
Google Scholar
Andersen, K.S., Kirkegaard, R.H., Karst, S.M., Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. BioRxiv. 2018; ;299537. doi: https://doi.org/10.1101/299537.
McMurdie PJ, Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE. 2013;8(4):1–11.
Article
Google Scholar
DeSantis T, Hugenholtz P, Larsen N, Rojas M, Brodie E, Keller K, Huber T, Dalevi D, Hu P, Andersen G. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;7:5069–72.
Article
Google Scholar
Obregón D, Bard E, Abrial D, Estrada-Peña A, Cabezas-Cruz A. Sex-Specific Linkages Between Taxonomic and Functional Profiles of Tick Gut Microbiomes. Front Cell Infect Microbiol. 2019;9:298. https://doi.org/10.3389/fcimb.2019.00298.
Article
CAS
Google Scholar
Qiu Y, Nakao R, Ohnuma A, Kawamori F, Sugimoto C. Microbial population analysis of the salivary glands of ticks; a possible strategy for the surveillance of bacterial pathogens. PLoS One. 2014;9(8):e103961.
Article
Google Scholar
Van Treuren W, Ponnusamy L, Brinkerhoff RJ, Gonzalez A, Parobek CM, Juliano JJ, Andreadis TG, Falco RC, Ziegler LB, Hathaway N, Keeler C, Emch M, Bailey JA, Roe RM, Apperson CS, Knight R, Meshnick SR. Variation in the microbiota of Ixodes ticks with regard to geography, species, and sex. Appl Environ Microbiol. 2015;81:6200–9. https://doi.org/10.1128/AEM.01562-15.
Article
CAS
Google Scholar
G, Cagnacci F, Wittekindt NE, Zhao F, Qi J, Tomsho LP, Drautz D, Rizzoli A, Schuster S. Metagenomic Profile of the Bacterial Communities Associated with Ixodes Ricinus Ticks. PLoS ONE. 2011; 6(10): e25604. https://doi.org/10.1371/journal.pone.0025604
Zhang X-C, Yang Z-N, Lu B, Ma X-F, Zhang C-X. The composition and transmission of microbiome in hard tick, Ixodes persulcatus, during blood meal. Ticks Tick Borne Dis. 2014;5:864–70.
Article
Google Scholar
Menchaca AC, Visi DK, Strey OF, Teel PD, Kalinowski K, Allen MS, Williamson P. Preliminary Assessment of Microbiome Changes Following Blood-Feeding and Survivorship in the Amblyomma americanum Nymph-to-Adult Transition using Semiconductor Sequencing. PLoS ONE. 2013;8(6): e67129. https://doi.org/10.1371/journal.pone.0067129.
Article
CAS
Google Scholar
Clayton KA, Gall CA, Mason KL, Scoles GA, Brayton KA. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick. Dermacentor andersoni Parasit Vectors. 2018;8:1–5.
CAS
Google Scholar
Patro LPP, Rathinavelan T. Targeting the Sugary Armo-ñr of Klebsiella Species. Front Cell Infect Microbiol. 2019;9:1–23. https://doi.org/10.3389/fcimb.2019.00367.
Article
CAS
Google Scholar
Folkesson A, Jelsbak L, Yang L, Johansen HK, Ciofu O, Hoiby N, Molin S. Adaptation of Pseudomonas aeruginosa to the cystic fibrosis airway: an evolutionary perspective. Nat Rev Microbiol. 2019;2019(10):841–51. https://doi.org/10.1038/nrmicro2907.
Article
CAS
Google Scholar
Graham MR, Smoot LM, Migliaccio CAL, Virtaneva K, Sturdevant DE, Porcella SF, et al. Virulence control in group a streptococcus by a two-component gene regulatory system: global expression profiling and in vivo infection modeling. Proc Natl Acad Sci U S A. 2002;99(21):13855–60 Available from: http://www.pnas.org/cgi/content/long/99/21/13855.
Fairchild GB, Kohls GM, Tipton VJ. The ticks of Panama (Acarina: Ixodoidea). In: Wenzel WR, Tipton VJ, editors. Ectoparasites of Panama. Chicago (IL): Field Museum of Natural History; 1966. p. 167–219.
Google Scholar
Jones EK, Clifford CM, Keirans JE, Kohls GM. The ticks of Venezuela (Acarina: Ixodoidea) with a key to the species of Amblyomma in the Western Hemisphere. Brigham Young Univ Sci Bull, Biol Ser. 1972;17:1–40.
Google Scholar
Kurilshikov A, Livanova NN, Fomenko NV, Tupikin AE, Rar VA, Kabilov MR, Livanov S, Tikunova N. Comparative Metagenomic Profiling of Symbiotic Bacterial Communities Associated with Ixodes persulcatus, Ixodes pavlovskyi and Dermacentor reticulatus Ticks. PLoS ONE. 2015;10(7): e0131413. https://doi.org/10.1371/journal.pone.0131413.
Article
CAS
Google Scholar
Bazquéz-Boland J, Meijer W. The pathogenic actinobacterium Rhodococcus equi: what’s in a name? Mol Microbiol. 2019;112(1):1–15.
Article
Google Scholar
Gerhart JG, Moses AS, Raghavan R. A Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci Rep. 2016;6:33670. https://doi.org/10.1038/srep33670.
Article
CAS
Google Scholar
Sjodin A, Svensson K, Ohrman C, Ahlinder J, Lindgren P, Duodu S, et al. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics. 2012;13:268. https://doi.org/10.1186/1471-2164-13-268.
Article
Google Scholar
Duron O, Binetruy F, Noel V, Cremaschi J, McCoy K, Arnathau C, Plantard O, et al. Evolutionary changes in symbiont community structure in ticks. Mol Ecol. 2017;26:2905–21. https://doi.org/10.1111/mec.14094.
Article
CAS
Google Scholar
Zhong J, Jasinskas A, Barbour AG. Antibiotic treatment of the tick vector Amblyomma americanum reduced reproductive fitness. PLoS ONE. 2017;2:1–7. https://doi.org/10.1371/journal.pone.0000405.
Article
CAS
Google Scholar
Gottlieb Y, Lalzar I, Klasson L. Distinctive genome reduction rates revealed by genomic analyses of two Coxiella-like endosymbionts in ticks. Genome Biol Evol. 2015;7:1779–96. https://doi.org/10.1093/gbe/evv108.
Article
CAS
Google Scholar
Gerhart, J.G., Moses, A.S., Raghavan, R. A. Francisella-like endosymbiont in the Gulf Coast tick evolved from a mammalian pathogen. Sci. Rep. 2016; 6.1–6. doi:https://doi.org/10.1038/srep3367.
Sjodin A, Svensson K, Ohrman C, Ahlinder J, Lindgren P, Duodu S, et al. Genome characterisation of the genus Francisella reveals insight into similar evolutionary paths in pathogens of mammals and fish. BMC Genomics. 2012;13:1–13. https://doi.org/10.1186/1471-2164-13-268.
Article
Google Scholar
Maj A, Dziewit L, Czarnecki J, Wlodarczyk M, Baj J, et al. Plasmids of Carotenoid-Producing Paracoccus spp. (Alphaproteobacteria) - Structure, Diversity and Evolution. PLoS ONE. 2013; 8(11): e80258. doi:https://doi.org/10.1371/journal.pone.0080258