Wake DB, Vredenburg VT. Are we in the midst of the sixth mass extinction? a view from the world of amphibians. Proc Natl Acad Sci. 2008;105(Supplement 1):11466–73.
Article
CAS
Google Scholar
Longcore JE, Pessier AP, Nichols DK. Batrachochytrium dendrobatidis gen. et sp. nov., a chytrid pathogenic to amphibians. Mycologia. 1999;91(2):219–27.
Article
Google Scholar
Fisher MC, Garner TW. Chytrid fungi and global amphibian declines. Nat Rev Microbiol. 2020;18(6):332–43.
Article
CAS
Google Scholar
Martel A, et al. Batrachochytrium salamandrivorans sp. nov. causes lethal chytridiomycosis in amphibians. Proc Natl Acad Sci. 2013;110(38):15325–9.
Article
CAS
Google Scholar
Olson DH, et al. Global patterns of the fungal pathogen Batrachochytrium dendrobatidis support conservation urgency. Front Vet Sci. 2021. 8.
Brutyn M, et al. Batrachochytrium dendrobatidis zoospore secretions rapidly disturb intercellular junctions in frog skin. Fungal Genet Biol. 2012;49(10):830–7.
Article
Google Scholar
Moss A, Carty N, San Francisco M. Identification and partial characterization of an elastolytic protease in the amphibian pathogen Batrachochytrium dendrobatidis. Dis Aquat Organ. 2010;92(2–3):149–58.
Google Scholar
Thekkiniath JC, et al. A novel subtilisin-like serine protease of Batrachochytrium dendrobatidis is induced by thyroid hormone and degrades antimicrobial peptides. Fungal Biol. 2013;117(6):451–61.
Article
CAS
Google Scholar
Fites JS, et al. The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. Science. 2013;342(6156):366–9.
Article
CAS
Google Scholar
Rollins-Smith LA, et al. Immunomodulatory metabolites released by the frog-killing fungus Batrachochytrium dendrobatidis. Infect Immun. 2015;83(12):4565–70.
Article
CAS
Google Scholar
Van Rooij P, et al. Germ tube mediated invasion of Batrachochytrium dendrobatidis in amphibian skin is host dependent. PLoS ONE. 2012;7(7): e41481.
Article
Google Scholar
Verbrugghe E, et al. Growth regulation in amphibian pathogenic chytrid fungi by the quorum sensing metabolite tryptophol. Front Microbiol. 2018;9:3277.
Article
Google Scholar
Berger L, Speare R, Skerratt LF. Distribution of Batrachochytrium dendrobatidis and pathology in the skin of green tree frogs Litoria caerulea with severe chytridiomycosis. Dis Aquat Org. 2005;68(1):65–70.
Article
Google Scholar
Marcum RD, et al. Effects of Batrachochytrium dendrobatidis infection on ion concentrations in the boreal toad Anaxyrus (Bufo) boreas boreas. Dis Aquat Org. 2010;91(1):17–21.
Article
Google Scholar
Keller NP, Turner G, Bennett JW. Fungal secondary metabolism—from biochemistry to genomics. Nat Rev Microbiol. 2005;3(12):937–47.
Article
CAS
Google Scholar
M’Barek SB, et al. FPLC and liquid-chromatography mass spectrometry identify candidate necrosis-inducing proteins from culture filtrates of the fungal wheat pathogen Zymoseptoria tritici. Fungal Genet Biol. 2015;79:54–62.
Article
Google Scholar
Sava V, et al. Acute neurotoxic effects of the fungal metabolite ochratoxin-A. Neurotoxicology. 2006;27(1):82–92.
Article
CAS
Google Scholar
Rodrigues KF, Hesse M, Werner C. Antimicrobial activities of secondary metabolites produced by endophytic fungi from Spondias mombin. J Basic Microbiol. 2000;40(4):261–7.
Article
CAS
Google Scholar
Anke H, et al. Secondary metabolites with nematicidal and antimicrobial activity from nematophagous fungi and Ascomycetes. Can J Bot. 1995;73(S1):932–9.
Article
Google Scholar
Gonçalves VN, et al. Antibacterial, antifungal and antiprotozoal activities of fungal communities present in different substrates from Antarctica. Polar Biol. 2015;38(8):1143–52.
Article
Google Scholar
Rollins-Smith LA, et al. Metabolites involved in immune evasion by Batrachochytrium dendrobatidis include the polyamine spermidine. Infect Immun. 2019;87(5):e00035-e119.
Article
CAS
Google Scholar
Smith D, et al. Beta-lactam antibiotic biosynthetic genes have been conserved in clusters in prokaryotes and eukaryotes. EMBO J. 1990;9(3):741–7.
Article
CAS
Google Scholar
Nielsen KF, Larsen TO. The importance of mass spectrometric dereplication in fungal secondary metabolite analysis. Front Microbiol. 2015;6:71.
Article
Google Scholar
Bushley KE, Turgeon BG. Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol. 2010;10(1):26.
Article
Google Scholar
Searle CL, et al. Differential host susceptibility to Batrachochytrium dendrobatidis, an emerging amphibian pathogen. Conserv Biol. 2011;25(5):965–74.
Article
CAS
Google Scholar
Brannelly LA, et al. Batrachochytrium dendrobatidis in natural and farmed Louisiana crayfish populations: prevalence and implications. Dis Aquat Org. 2015;112(3):229–35.
Article
Google Scholar
McMahon TA, et al. Chytrid fungus Batrachochytrium dendrobatidis has nonamphibian hosts and releases chemicals that cause pathology in the absence of infection. Proc Natl Acad Sci. 2013;110(1):210–5.
Article
CAS
Google Scholar
Shapard E, Moss A, San Francisco M. Batrachochytrium dendrobatidis can infect and cause mortality in the nematode Caenorhabditis elegans. Mycopathologia. 2012;173(2–3):121–6.
Article
Google Scholar
Liew N, et al. Chytrid fungus infection in zebrafish demonstrates that the pathogen can parasitize non-amphibian vertebrate hosts. Nat Commun. 2017;8:15048.
Article
CAS
Google Scholar
Fuchs BB, et al. Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence. 2010;1(6):475–82.
Article
Google Scholar
Mukherjee K, et al. Galleria mellonella as a model system for studying Listeria pathogenesis. Appl Environ Microbiol. 2010;76(1):310–7.
Article
CAS
Google Scholar
Tsai CJ-Y, Loh JMS, Proft T. Galleria mellonella infection models for the study of bacterial diseases and for antimicrobial drug testing. Virulence. 2016;7(3):214–29.
Article
CAS
Google Scholar
McMahon TA, et al. Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. Nature. 2014;511(7508):224–7.
Article
CAS
Google Scholar
Nishanth Kumar S, et al. Cyclo (d‐Tyr‐d‐Phe): a new antibacterial, anticancer, and antioxidant cyclic dipeptide from Bacillus sp. N strain associated with a rhabditid entomopathogenic nematode. J Pept Sci. 2014;20(3):173–85.
Google Scholar
Ström K, et al. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo (L-Phe-L-Pro) and cyclo (L-Phe-trans-4-OH-L-Pro) and 3-phenyllactic acid. Appl Environ Microbiol. 2002;68(9):4322–7.
Article
Google Scholar
Bina XR, Bina JE. The cyclic dipeptide cyclo (Phe-Pro) inhibits cholera toxin and toxin-coregulated pilus production in O1 El Tor Vibrio cholerae. J Bacteriol. 2010;192(14):3829–32.
Article
CAS
Google Scholar
Kim K, et al. Cyclo (Phe-Pro) produced by the human pathogen Vibrio vulnificus inhibits host innate immune responses through the NF-κB pathway. Infect Immun. 2015;83(3):1150–61.
Article
Google Scholar
Ortiz-Castro R, et al. Transkingdom signaling based on bacterial cyclodipeptides with auxin activity in plants. Proc Natl Acad Sci. 2011;108(17):7253–8.
Article
CAS
Google Scholar
Holden MT, et al. Quorum-sensing cross talk: isolation and chemical characterization of cyclic dipeptides from Pseudomonas aeruginosa and other gram-negative bacteria. Mol Microbiol. 1999;33(6):1254–66.
Article
CAS
Google Scholar
Park D-K, et al. Cyclo (Phe-Pro) modulates the expression of ompU in Vibrio spp. J Bacteriol. 2006;188(6):2214–21.
Article
CAS
Google Scholar
Brauns SC, et al. Selected cyclic dipeptides inhibit cancer cell growth and induce apoptosis in HT-29 colon cancer cells. Anticancer Res. 2004;24(3A):1713–20.
CAS
Google Scholar
Milne P, et al. Medicinal chemistry: The biological activity of selected cyclic dipeptides. J Pharm Pharmacol. 1998;50(12):1331–7.
Article
CAS
Google Scholar
Fuchs SA, et al. D-amino acids in the central nervous system in health and disease. Mol Genet Metab. 2005;85(3):168–80.
Article
CAS
Google Scholar
Wang N, Cui C-B, Li C-W. A new cyclic dipeptide penicimutide: the activated production of cyclic dipeptides by introduction of neomycin-resistance in the marine-derived fungus Penicillium purpurogenum G59. Arch Pharmacal Res. 2016;39(6):762–70.
Article
CAS
Google Scholar
Medema MH, et al. antiSMASH: rapid identification, annotation and analysis of secondary metabolite biosynthesis gene clusters in bacterial and fungal genome sequences. Nucleic Acids Res. 2011;39(suppl_2):W339–46.
Article
CAS
Google Scholar
Brakhage AA. Regulation of fungal secondary metabolism. Nat Rev Microbiol. 2013;11(1):21–32.
Article
CAS
Google Scholar
Mootz HD, Marahiel MA. The tyrocidine biosynthesis operon of Bacillus brevis: complete nucleotide sequence and biochemical characterization of functional internal adenylation domains. J Bacteriol. 1997;179(21):6843–50.
Article
CAS
Google Scholar
Yang J, et al. An insecticidal protein from Xenorhabdus budapestensis that results in prophenoloxidase activation in the wax moth, Galleria mellonella. J Invertebr Pathol. 2012;110(1):60–7.
Article
CAS
Google Scholar
Ratcliffe NA, Leonard C, Rowley AF. Prophenoloxidase activation: nonself recognition and cell cooperation in insect immunity. Science. 1984;226(4674):557–9.
Article
CAS
Google Scholar
Kopácek P, Weise C, Götz P. The prophenoloxidase from the wax moth Galleria mellonella: purification and characterization of the proenzyme. Insect Biochem Mol Biol. 1995;25(10):1081–91.
Article
Google Scholar
Mak TW, Saunders ME. The immune response. Part I: Basic Immunology, 2006: p. 373–401.
Kiriyama, Y. and H. Nochi, D-amino acids in the nervous and endocrine systems. Scientifica, 2016. 2016.
Altstein M, et al. Advances in the application of neuropeptides in insect control. Crop Prot. 2000;19(8–10):547–55.
Article
CAS
Google Scholar
Barbeta BL, et al. Plant cyclotides disrupt epithelial cells in the midgut of lepidopteran larvae. Proc Natl Acad Sci. 2008;105(4):1221–5.
Article
CAS
Google Scholar
Zhou H, Lorenz MC. Carnitine acetyltransferases are required for growth on non-fermentable carbon sources but not for pathogenesis in Candida albicans. Microbiology. 2008;154(2):500–9.
Article
CAS
Google Scholar
Bajgar J. Organophosphates/nerve agent poisoning: mechanism of action, diagnosis, prophylaxis, and treatment. Adv Clin Chem. 2004;38(1):151–216.
Article
CAS
Google Scholar
Colatsky T, Follmer C. Potassium channels as targets for antiarrhythmic drug action. Drug Dev Res. 1990;19(2):129–40.
Article
CAS
Google Scholar
Loenen, W., S-adenosylmethionine: jack of all trades and master of everything? 2006, Portland Press Limited.
Christopher SA, et al. Methylthioadenosine phosphorylase, a gene frequently codeleted with p16cdkN2a/ARF, acts as a tumor suppressor in a breast cancer cell line. Can Res. 2002;62(22):6639–44.
CAS
Google Scholar
LS Kishbaugh, T., Pyridines and Imidazopyridines with medicinal significance. Curr Topics Med Chem. 2016. 16(28): p. 3274–3302.
Verbrugghe E, et al. Growth regulation in amphibian pathogenic chytrid fungi by the quorum sensing metabolite tryptophol. Front Microbiol. 2019;9:3277.
Article
Google Scholar
Chong J, Wishart DS, Xia J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr Protoc Bioinforma. 2019. 68(1): p. e86.
Champion OL, Titball RW, Bates S. Standardization of G. mellonella larvae to provide reliable and reproducible results in the study of fungal pathogens. J Fungi. 2018. 4(3): p. 108.