Flint HJ, Scott KP, Louis P, Duncan SH. The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol. 2012;9(10):577.
Article
CAS
PubMed
Google Scholar
Ahmad AA, Yang C, Zhang J, Kalwar Q, Liang Z, Chen L, et al. Effect of dietary energy levels on rumen fermentation, microbial diversity and feed efficiency of yaks (Bos grunniens). Front Microbiol. 2020;11:625.
Article
PubMed
PubMed Central
Google Scholar
Henderson G, Cox F, Ganesh S, Jonker A, Young W, Abecia L, et al. Rumen microbial community composition varies with diet and host, but a core microbiome is found across a wide geographical range. Sci Rep. 2015;5:14567.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li F, Li C, Chen Y, Liu J, Zhang C, Irving B, et al. Host genetics influence the rumen microbiota and heritable rumen microbial features associate with feed efficiency in cattle. Microbiome. 2019;7(1):92.
Article
PubMed
PubMed Central
Google Scholar
Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao JZ, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a cross-sectional study. BMC microbiol. 2016;16(1):1–12.
Article
CAS
Google Scholar
Minato H, Otsuka M, Shirasaka S, Itabashi H, Mitsumori M. Colonization of microorganisms in the rumen of young calves. J Gen Appl Microbiol. 1992;38(5):447–56.
Article
Google Scholar
Fonty G, Gouet P, Jouany J-P, Senaud J. Establishment of the microflora and anaerobic fungi in the rumen of lambs. Microbiol Mol biol Rev. 1987;133(7):1835–43.
Google Scholar
Li RW, Connor EE, Li C, Baldwin V, Ransom L, Sparks ME. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol. 2012;14(1):129–39.
Article
CAS
PubMed
Google Scholar
Jami E, Israel A, Kotser A, Mizrahi I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013;7(6):1069–79.
Article
PubMed
PubMed Central
Google Scholar
Liu C, Meng Q, Chen Y, Xu M, Shen M, Gao R, et al. Role of age-related shifts in rumen bacteria and methanogens in methane production in cattle. Front Microbiol. 2017;8:1563.
Article
PubMed
PubMed Central
Google Scholar
Li RW, Connor EE, Li C, Baldwin V, Ransom L, Sparks ME. Characterization of the rumen microbiota of pre-ruminant calves using metagenomic tools. Environ Microbiol. 2012;14(1):129–39.
Article
CAS
PubMed
Google Scholar
Meale SJ, Li S, Azevedo P, Derakhshani H, DeVries T, Plaizier J, et al. Weaning age influences the severity of gastrointestinal microbiome shifts in dairy calves. Sci Rep. 2017;7(1):1–13.
Article
CAS
Google Scholar
Amin N, Schwarzkopf S, Kinoshita A, Tröscher-Mußotter J, Dänicke S, Camarinha-Silva A, et al. Evolution of rumen and oral microbiota in calves is influenced by age and time of weaning. Animal microbiome. 2021;3(1):1–15.
Article
CAS
Google Scholar
Yin X, Ji S, Duan C, Tian P, Ju S, Yan H, et al. Age-related changes in the ruminal microbiota and their relationship with rumen fermentation in lambs. Front Microbiol. 2021;12:679135.
Article
PubMed
PubMed Central
Google Scholar
Kodithuwakku H, Maruyama D, Owada H, Watabe Y, Miura H, Suzuki Y, et al. Alterations in rumen microbiota via oral fiber administration during early life in dairy cows. Sci Rep. 2022;12(1):1–12.
Article
CAS
Google Scholar
Meale SJ, Li S, Azevedo P, Derakhshani H, Plaizier JC, Khafipour E, et al. Development of ruminal and fecal microbiomes are affected by weaning but not weaning strategy in dairy calves. Front Microbiol. 2016;7:582.
Article
PubMed
PubMed Central
Google Scholar
Jami E, Israel A, Kotser A, Mizrahi I. Exploring the bovine rumen bacterial community from birth to adulthood. ISME J. 2013;7(6):1069–79.
Article
PubMed
PubMed Central
Google Scholar
Van F, Tjan C, Zhun V. Mongolian cattle improvement and beef breeding planning (in Chieneese). Anim Husbandry feed Sci. 2004;6:67–8.
Google Scholar
Fedotova G, Slozhenkina M, Natyrov A, Erendzhenova M, editors. Comparative analysis of economic and biological features of Kalmyk and Mongolian cattle breeds. In IOP Conference Series: Earth and Environmental Science, vol. 548, no. 8, p. 082076. IOP Publishing; 2020. https://iopscience.iop.org/article/10.1088/1755-1315/548/8/082076.
Xing Y, Qi Y, Purev C, Wang S, Wang H, Wu K, et al. Structural variants in Mongolian originated ruminant: role in adaptation of extreme-environment. Research Square. 2020.
Google Scholar
Zhang X. Northern China. Grasslands and Grassland Sciences in Northern China: The national academies press. 1992. p. 39–54.
Google Scholar
Vasseur E, Borderas F, Cue RI, Lefebvre D, Pellerin D, Rushen J, et al. A survey of dairy calf management practices in Canada that affect animal welfare. J Dairy Sci. 2010;93(3):1307–16.
Article
CAS
PubMed
Google Scholar
Schwarzkopf S, Kinoshita A, Kluess J, Kersten S, Meyer U, Huber K, et al. Weaning Holstein calves at 17 weeks of age enables smooth transition from liquid to solid feed. Animals. 2019;9(12):1132.
Article
PubMed Central
Google Scholar
Ochirkhuu N, Konnai S, Odbileg R, Nishimori A, Okagawa T, Murata S, et al. Detection of bovine leukemia virus and identification of its genotype in Mongolian cattle. Adv Virol. 2016;161(4):985–91.
CAS
Google Scholar
Hu L, Brito LF, Abbas Z, Sammad A, Kang L, Wang D, et al. Investigating the short-term effects of cold stress on metabolite responses and metabolic pathways in inner-mongolia sanhe cattle. Animals. 2021;11(9):2493.
Article
PubMed
PubMed Central
Google Scholar
Wang Y, Zhang H, Zhu L, Xu Y, Liu N, Sun X, et al. Dynamic distribution of gut microbiota in goats at different ages and health states. Front Microbiol. 2018;9:2509.
Article
PubMed
PubMed Central
Google Scholar
Lane M, Baldwin Rt, Jesse BJJoas. Sheep rumen metabolic development in response to age and dietary treatments. 2000;78(7):1990-6
Han X, Yang Y, Yan H, Wang X, Qu L, Chen Y. Rumen bacterial diversity of 80 to 110-day-old goats using 16S rRNA sequencing. PLoS ONE. 2015;10(2):e0117811.
Article
CAS
PubMed
PubMed Central
Google Scholar
Petri R, Schwaiger T, Penner G, Beauchemin K, Forster R, McKinnon J, et al. Changes in the rumen epimural bacterial diversity of beef cattle as affected by diet and induced ruminal acidosis. Appl Environ Microbiol. 2013;79(12):3744–55.
Article
CAS
PubMed
PubMed Central
Google Scholar
Malmuthuge N, Liang G. Regulation of rumen development in neonatal ruminants through microbial metagenomes and host transcriptomes. Genome Biol. 2019;20(1):172.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pitta DW, Indugu N, Kumar S, Vecchiarelli B, Sinha R, Baker LD, et al. Metagenomic assessment of the functional potential of the rumen microbiome in Holstein dairy cows. Anaerobe. 2016;38:50–60.
Article
CAS
PubMed
Google Scholar
Kumar S, Indugu N, Vecchiarelli B, Pitta DW. Associative patterns among anaerobic fungi, methanogenic archaea, and bacterial communities in response to changes in diet and age in the rumen of dairy cows. Front Microbiol. 2015;6:781.
Article
PubMed
PubMed Central
Google Scholar
Zhang B, Wu X, Tai X, Sun L, Wu M, Zhang W, et al. Variation in actinobacterial community composition and potential function in different soil ecosystems belonging to the arid Heihe River Basin of Northwest China. Front Microbiol. 2019;10:2209.
Article
PubMed
PubMed Central
Google Scholar
Paster B, Canale-Parola E. Physiological diversity of rumen spirochetes. Appl Environ Microbiol. 1982;43(3):686–93.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang Y, Huang J-M, Zhou Y-L, Almeida A, Finn RD, Danchin A, et al. Phylogenomics of expanding uncultured environmental Tenericutes provides insights into their pathogenicity and evolutionary relationship with Bacilli. BMC Genomics. 2020;21(1):1–12.
Article
Google Scholar
Shin N-R, Whon TW, Bae J-W. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33(9):496–503.
Article
CAS
PubMed
Google Scholar
Waite DW, Vanwonterghem I, Rinke C, Parks DH, Zhang Y, Takai K, et al. Comparative genomic analysis of the class Epsilonproteobacteria and proposed reclassification to Epsilonbacteraeota (phyl. nov.). Front Microbiol. 2017;8:682.
Article
PubMed
PubMed Central
Google Scholar
Ley RE. Prevotella in the gut: choose carefully. Nat Rev Gastroenterol Hepatol. 2016;13(2):69–70.
Article
CAS
PubMed
Google Scholar
Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20(4):593–621.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collado MC, Meriluoto J, Salminen S. Measurement of aggregation properties between probiotics and pathogens: in vitro evaluation of different methods. J Microbiol Methods. 2007;71(1):71–4.
Article
CAS
PubMed
Google Scholar
Timmerman H, Koning C, Mulder L, Rombouts F, Beynen A. Monostrain, multistrain and multispecies probiotics—a comparison of functionality and efficacy. Int J Food Microbiol. 2004;96(3):219–33.
Article
CAS
PubMed
Google Scholar
Bi Y, Zeng S, Zhang R, Diao Q, Tu Y. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition. BMC Microbiol. 2018;18(1):69.
Article
CAS
PubMed
PubMed Central
Google Scholar
Holman DB, Gzyl KE. A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS microbiology ecology. 2019;95(6):fiz072.
Article
CAS
PubMed
Google Scholar
Downes J, Dewhirst FE, Tanner AC, Wade WG. WG. Description of Alloprevotella rava gen. nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. nov., comb. nov. Int J Syst Evol Microbiol. 2013;63(Pt 4):1214.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, et al. Dysbiosis gut microbiota associated with inflammation and impaired mucosal immune function in intestine of humans with non-alcoholic fatty liver disease. Sci Rep. 2015;5(1):1–7.
Google Scholar
Neumann AP, McCormick CA, Suen G. Fibrobacter communities in the gastrointestinal tracts of diverse hindgut-fermenting herbivores are distinct from those of the rumen. Environ Microbiol. 2017;19(9):3768–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang Y, Zhang X, Li F, Li C, Li G, Zhang D, et al. Characterization of the rumen microbiota and its relationship with residual feed intake in sheep. Animal. 2021;15(3):100161.
Article
CAS
PubMed
Google Scholar
Bi Y, Cox MS, Zhang F, Suen G, Zhang N, Tu Y, et al. Feeding modes shape the acquisition and structure of the initial gut microbiota in newborn lambs. Environ Microbiol. 2019;21(7):2333–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Batt SM, Wannemuehler M, Dispirito A, Beitz DC. Effect of feeding of a cholesterol-reducing bacterium, Eubacterium coprostanoligenes, to germ-free mice. Comp Med. 1998;48(3):253–5.
CAS
Google Scholar
Wang H, Xia P, Lu Z, Su Y, Zhu W. Metabolome-Microbiome Responses of Growing Pigs Induced by Time-Restricted Feeding. Front Vet Sci. 2021;8:681202. https://doi.org/10.3389/fvets.2021.681202.
Li F, Wang Z, Dong C, Li F, Wang W, Yuan Z, et al. Rumen bacteria communities and performances of fattening lambs with a lower or greater subacute ruminal acidosis risk. Front Microbiol. 2017;8:2506.
Article
PubMed
PubMed Central
Google Scholar
Huo W, Zhu W, Mao S. Impact of subacute ruminal acidosis on the diversity of liquid and solid-associated bacteria in the rumen of goats. World J Microbiol Biotechnol. 2014;30(2):669–80.
Article
CAS
PubMed
Google Scholar
Martínez I, Wallace G, Zhang C, Legge R, Benson AK, Carr TP, et al. Diet-induced metabolic improvements in a hamster model of hypercholesterolemia are strongly linked to alterations of the gut microbiota. Appl Environ Microbiol. 2009;75(12):4175–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Van den Abbeele P, Belzer C, Goossens M, Kleerebezem M, De Vos WM, Thas O, et al. Butyrate-producing Clostridium cluster XIVa species specifically colonize mucins in an in vitro gut model. ISME J. 2013;7(5):949–61.
Article
CAS
PubMed
Google Scholar
Asma Z, Sylvie C, Laurent C, Jérôme M, Christophe K, Olivier B, et al. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol Ecol. 2013;83(2):504–14.
Article
CAS
Google Scholar
Sagheddu V, Patrone V, Miragoli F, Puglisi E, Morelli L. Infant early gut colonization by Lachnospiraceae: high frequency of Ruminococcus gnavus. Front Pediatr. 2016;4:57.
Article
PubMed
PubMed Central
Google Scholar
Klopp R, Oconitrillo M, Sackett A, Hill T, Schlotterbeck R, Lascano G. A simple rumen collection device for calves: an adaptation of a manual rumen drenching system. J Dairy Sci. 2018;101(7):6155–8.
Article
CAS
PubMed
Google Scholar
Shen J, Chai Z, Song L, Liu J, Wu Y. Insertion depth of oral stomach tubes may affect the fermentation parameters of ruminal fluid collected in dairy cows. J Dairy Sci. 2012;95(10):5978–84.
Article
CAS
PubMed
Google Scholar
Isac MD, García MA, Aguilera JF, Alcaide EM. A comparative study of nutrient digestibility, kinetics of digestion and passage and rumen fermentation pattern in goats and sheep offered medium quality forages at the maintenance level of feeding. Arch Anim Nutr. 1994;46(1):37–50.
CAS
Google Scholar
Minas K, McEwan NR, Newbold CJ, Scott KP. Optimization of a high-throughput CTAB-based protocol for the extraction of qPCR-grade DNA from rumen fluid, plant and bacterial pure cultures. FEMS Microbiol Lett. 2011;325(2):162–9.
Article
CAS
PubMed
Google Scholar
Lee PY, Costumbrado J, Hsu C-Y, Kim YH. Agarose gel electrophoresis for the separation of DNA fragments. J Vis Exp. 2012;62:3923.
Google Scholar
Nossa CW, Oberdorf WE, Yang L, Aas JA, Paster BJ, DeSantis TZ, et al. Design of 16S rRNA gene primers for 454 pyrosequencing of the human foregut microbiome. World J Gastroenterol. 2010;16(33):4135.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schofield BJ, Lachner N, Le OT, McNeill DM, Dart P, Ouwerkerk D, et al. Beneficial changes in rumen bacterial community profile in sheep and dairy calves as a result of feeding the probiotic Bacillus amyloliquefaciens H57. J Appl Microbiol. 2018;124(3):855–66.
Article
CAS
PubMed
Google Scholar
Armbrecht M. Economic DNA Determination in the Eppendorf BioSpectrometer® fluorescence Using Qubit™ Assay kits. Eppendorf Application Note 402; www.eppendorf.com, https://handling-solutions.eppendorf.com/fileadmin/Community/Sample_Handling/Amplification/Application_Note_402.pdf.
Holm JB, Humphrys MS, Robinson CK, Settles ML, Ott S, Fu L, et al. Ultrahigh-throughput multiplexing and sequencing of> 500-base-pair amplicon regions on the Illumina HiSeq 2500 platform. MSystems. 2019;4(1):e00029-e119.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 2011;27(16):2194–200.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:e2584.
Article
PubMed
PubMed Central
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012;41(D1):D590–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, Mcglinn D, et al. Package “vegan” Title Community Ecology Package. 2019.
Google Scholar
Hollander M, Wolfe DA, Chicken E. Nonparametric statistical methods: John Wiley & Sons. 2013.
Google Scholar
Anderson MJ, Walsh DC. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol Monogr. 2013;83(4):557–74.
Article
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):1–18.
Article
Google Scholar
Griffith DM, Veech JA, Marsh CJ. Cooccur: probabilistic species co-occurrence analysis in R. J Stat Softw. 2016;69:1–17.
Article
Google Scholar
Liaw A, Wiener M. Classification and regression by randomForest. R news. 2002;2(3):18–22.
Google Scholar