Rhouma M, Beaudry F, Thériault W, Bergeron N, Laurent-Lewandowski S, Fairbrother JM, et al. Impacts of colistin sulfate on fecal Escherichia coli resistance and on growth. Safepork Posters. 2015:361–5.
Do K-H, Byun J-W, Lee W-K. Antimicrobial resistance, adhesin and toxin genes of porcine pathogenic Escherichia coli following the ban on antibiotics as the growth promoters in feed. Pak Vet J. 2021;41:519–23.
CAS
Google Scholar
Joseph A, Cointe A, Mariani Kurkdjian P, Rafat C, Hertig A. Shiga toxin-associated hemolytic uremic syndrome: a narrative review. Toxins (Basel). 2020;12(2):1–46. https://doi.org/10.3390/toxins12020067.
Article
CAS
Google Scholar
European Food Safety Authority, European Centre for Disease Prevention and Control. The European Union Summary Report on antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. EFSA J. 2021;19(4):e06490. https://doi.org/10.2903/j.efsa.2021.6490.
Article
CAS
Google Scholar
Animal and Plant Quarantine Agency. Antimicrobial use and antimicrobial resistance monitoring in animals and animal products. Gimcheon: Animal and Plant Quarantine Agency; 2019.
Szmolka A, Nagy B. Multidrug resistant commensal Escherichia coli in animals and its impact for public health. Front Microbiol. 2013;4:258. https://doi.org/10.3389/fmicb.2013.00258.
Article
PubMed
PubMed Central
Google Scholar
Iguchi A, Iyoda S, Seto K, Morita-Ishihara T, Scheutz F, Ohnishi M, et al. Escherichia coli O-genotyping PCR: A comprehensive and practical platform for molecular O serogrouping. J Clin Microbiol. 2015;53(8):2427–32. https://doi.org/10.1128/JCM.00321-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bai X, Hu B, Xu Y, Sun H, Zhao A, Ba P, et al. Molecular and phylogenetic characterization of non-O157 Shiga toxin-producing Escherichia coli strains in China. Front Cell Infect Microbiol. 2016;6:143. https://doi.org/10.3389/fcimb.2016.00143.
Article
CAS
PubMed
PubMed Central
Google Scholar
Do KH, Byun JW, Lee WK. Prevalence of O-serogroups, virulence genes, and F18 antigenic variants in Escherichia coli isolated from weaned piglets with diarrhea in Korea during 2008-2016. J Vet Sci. 2019;20(1):43–50. https://doi.org/10.4142/jvs.2019.20.1.43.
Article
PubMed
PubMed Central
Google Scholar
Jaureguy F, Landraud L, Passet V, Diancourt L, Frapy E, Guigon G, et al. Phylogenetic and genomic diversity of human bacteremic Escherichia coli strains. BMC Genomics. 2008;9:560. https://doi.org/10.1186/1471-2164-9-560.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-fourth Informational Supplement, M100-S24; 2020.
Bauer AW, Kirby WM, Sherris JC, Turck M. Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol. 1966;45(4):493–6. https://doi.org/10.1093/ajcp/45.4_ts.493.
Article
CAS
PubMed
Google Scholar
Magiorakos A, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, et al. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Microbiology. 2011;18:268–81.
Google Scholar
Pungpian C, Sinwat N, Angkititrakul S, Prathan R, Chuanchuen R. Presence and transfer of antimicrobial resistance determinants in Escherichia coli in pigs, pork, and humans in Thailand and Lao PDR border provinces. Microb Drug Resist. 2021;27(4):571–84. https://doi.org/10.1089/mdr.2019.0438.
Article
CAS
PubMed
Google Scholar
Sinwat N, Angkittitrakul S, Coulson KF, Pilapil FMIR, Meunsene D, Chuanchuen R. High prevalence and molecular characteristics of multidrug-resistant Salmonella in pigs,pork and humans in Thailand and Laos provinces. J Med Microbiol. 2016;65(10):1182–93. https://doi.org/10.1099/jmm.0.000339.
Article
CAS
PubMed
Google Scholar
Do KH, Byun JW, Lee WK. Virulence genes and antimicrobial resistance of pathogenic Escherichia coli isolated from diarrheic weaned piglets in Korea. J Anim Sci Technol. 2020;62(4):543–52. https://doi.org/10.5187/jast.2020.62.4.543.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schroeder CM, Zhao C, DebRoy C, Torcolini J, Zhao S, White DG, et al. Antimicrobial resistance of Escherichia coli O157 isolated from humans, cattle, swine, and food. Appl Environ Microbiol. 2002;68(2):576–81. https://doi.org/10.1128/AEM.68.2.576-581.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Davies R, Wales A. Antimicrobial resistance on farms: a review including biosecurity and the potential role of disinfectants in resistance selection. Compr Rev Food Sci Food Saf. 2019;18(3):753–74. https://doi.org/10.1111/1541-4337.12438.
Article
CAS
PubMed
Google Scholar
FAO. Joint FAO/WHO/OIE expert meeting on critically important antimicrobials. In: Proceedings of the FAO/WHO/OIE expert meeting FAO headquarters.
Hu YS, Shin S, Park YH, Park KT. Prevalence and mechanism of fluoroquinolone resistance in Escherichia coli isolated from swine feces in Korea. J Food Prot. 2017;80(7):1145–51. https://doi.org/10.4315/0362-028X.JFP-16-502.
Article
CAS
PubMed
Google Scholar
Van Den Bogaard AEJM, London N, Stobberingh EE. Antimicrobial resistance in pig faecal samples from the Netherlands (five abattoirs) and Sweden. J Antimicrob Chemother. 2000;45(5):663–71. https://doi.org/10.1093/jac/45.5.663.
Article
Google Scholar
Sayah RS, Kaneene JB, Johnson Y, Miller R. Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human Septage, and surface water. Appl Environ Microbiol. 2005;71(3):1394–404. https://doi.org/10.1128/AEM.71.3.1394-1404.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Barton MD. Impact of antibiotic use in the swine industry. Curr Opin Microbiol. 2014;19:9–15. https://doi.org/10.1016/j.mib.2014.05.017.
Article
PubMed
Google Scholar
Zarrilli R, Tripodi MF, Di Popolo A, Fortunato R, Bagattini M, Crispino M, et al. Molecular epidemiology of high-level aminoglycoside-resistant enterococci isolated from patients in a university hospital in southern Italy. J Antimicrob Chemother. 2005;56(5):827–35. https://doi.org/10.1093/jac/dki347.
Article
CAS
PubMed
Google Scholar
van Breda LK, Dhungyel OP, Ward MP. Antibiotic resistant Escherichia coli in southeastern Australian pig herds and implications for surveillance. Zoonoses Public Health. 2018;65(1):e1–7. https://doi.org/10.1111/zph.12402.
Article
CAS
PubMed
Google Scholar
Jackson CR, Fedorka-Cray PJ, Barrett JB, Ladely SR. High-level aminoglycoside resistant enterococci isolated from swine. Epidemiol Infect. 2005;133(2):367–71. https://doi.org/10.1017/s0950268804003395.
Article
CAS
PubMed
PubMed Central
Google Scholar
Aarestrup FM, Oliver Duran C, Burch DGS. Antimicrobial resistance in swine production. Anim Health Res Rev. 2008;9(2):135–48. https://doi.org/10.1017/S1466252308001503.
Article
PubMed
Google Scholar
Pan Y, Hu B, Bai X, Yang X, Cao L, Liu Q, et al. Antimicrobial resistance of non-o157 Shiga toxin-producing Escherichia coli isolated from humans and domestic animals. Antibiotics (Basel). 2021;10(1):1–13. https://doi.org/10.3390/antibiotics10010074.
Article
CAS
Google Scholar
Johnson TJ, Logue CM, Johnson JR, Kuskowski MA, Sherwood JS, Barnes HJ, et al. Associations between multidrug resistance, plasmid content, and virulence potential among extraintestinal pathogenic and commensal Escherichia coli from humans and poultry. Foodborne Pathog Dis. 2012;9(1):37–46. https://doi.org/10.1089/fpd.2011.0961.
Article
CAS
PubMed
PubMed Central
Google Scholar
Korea Institute for Health and Social Affairs. Drug use evaluation. Seoul: Korea Institute for Health and Social Affairs; 2000.
Google Scholar
Organization for Economic Co-operation and Development. Antimicrobial resistance. OECD. Available from: http://www.oecd.org/els/health-systems/antimicrobial-resistance.htm.
Boerlin P, McEwen SA, Boerlin-Petzold F, Wilson JB, Johnson RP, Gyles CL. Associations between virulence factors of Shiga toxin-producing Escherichia coli and disease in humans. J Clin Microbiol. 1999;37(3):497–503. https://doi.org/10.1128/JCM.37.3.497-503.1999.
Article
CAS
PubMed
PubMed Central
Google Scholar
Paul N. Review virulence nature of Escherichia coli in neonatal swine. J Anim Feed Res. 2015;5:169–74.
CAS
Google Scholar
Lee JH, Cho HT, Kim YH, Kang HJ, Cha IH. Isolation of enteropathogenic Escherichia coli, thermophilic Campylobacter and Salmonelleae from scouring piglets. Korean J Vet Res. 1988;28:67–73.
Google Scholar
Brilhante M, Perreten V, Donà V. Multidrug resistance and multivirulence plasmids in enterotoxigenic and hybrid Shiga toxin-producing/enterotoxigenic Escherichia coli isolated from diarrheic pigs in Switzerland. Vet J. 2019;244:60–8. https://doi.org/10.1016/j.tvjl.2018.12.015.
Article
CAS
PubMed
Google Scholar
Do K-H, Byun J-W, Lee W-K. Serogroups, virulence genes and antimicrobial resistance of F4+ and F18+ Escherichia coli isolated from weaned piglets. Pak Vet J. 2019;39(2):266–70. https://doi.org/10.29261/pakvetj/2019.021.
Article
CAS
Google Scholar
Duan Q, Nandre R, Zhou M, Zhu G. Type I fimbriae mediate in vitro adherence of porcine F18ac+ enterotoxigenic Escherichia coli (ETEC). Ann Microbiol. 2017;67(12):793–9. https://doi.org/10.1007/s13213-017-1305-z.
Article
CAS
Google Scholar
Kwon D, Choi C, Jung T, Chung HK, Kim JP, Bae SS, et al. Genotypic prevalence of the fimbrial adhesins (F4, F5, F6, F41 and F18) and toxins (LT, STa, STb and Sbc2e) in Escherichia coli isolated from postweaning pigs with diarrhoea or oedema disease in Korea. Vet Rec. 2002;150(2):35–7. https://doi.org/10.1136/vr.150.2.35.
Article
CAS
PubMed
Google Scholar
Lee SI, Rayamahji N, Lee WJ, Cha SB, Shin MK, Roh YM, et al. Genotypes, antibiogram, and pulsed-field gel electrophoresis profiles of Escherichia coli strains from piglets in Korea. J Vet Diagn Investig. 2009;21(4):510–6. https://doi.org/10.1177/104063870902100413.
Article
Google Scholar
Do KH, Park HE, Byun JW, Lee WK. Virulence and antimicrobial resistance profiles of Escherichia coli encoding mcr gene from diarrhoeic weaned piglets in Korea during 2007-2016. J Glob Antimicrob Resist. 2020;20:324–7. https://doi.org/10.1016/j.jgar.2019.09.010.
Article
PubMed
Google Scholar
Jung J, Kim H, Jo A, Kim J, Lee W, Byun J. Enrichment media for Stx2e production in Shiga toxin-producing Escherichia coli. J Biomed Transl Res. 2017;18(3):103–7. https://doi.org/10.12729/jbtr.2017.18.3.103.
Article
Google Scholar
Lee JB, Han D, Lee HT, Wi SM, Park JH, Jo JW, et al. Pathogenic and phylogenetic characteristics of non-O157 Shiga toxin-producing Escherichia coli isolates from retail meats in South Korea. J Vet Sci. 2018;19(2):251–9. https://doi.org/10.4142/jvs.2018.19.2.251.
Article
PubMed
PubMed Central
Google Scholar
Waddell TE, Lingwood CA, Gyles CL. Interaction of verotoxin 2ème with pig intestine. Infect Immun. 1996;64(5):1714–9. https://doi.org/10.1128/iai.64.5.1714-1719.1996.
Article
CAS
PubMed
PubMed Central
Google Scholar
Neut C. Carriage of multidrug-resistant bacteria in healthy people: recognition of several risk groups. Antibiotics (Basel). 2021;10(10):1163. https://doi.org/10.3390/antibiotics10101163.
Article
PubMed
PubMed Central
Google Scholar
Luppi A. Swine enteric colibacillosis: diagnosis, therapy and antimicrobial resistance. Porc Porcine Health Manag. 2017;3:16. https://doi.org/10.1186/s40813-017-0063-4.
Article
Google Scholar
Niewerth U, Frey A, Voss T, Le Bouguénec C, Baljer G, Franke S, et al. The AIDA autotransporter system is associated with F18 and Stx2e in Escherichia coliIsolates from pigs diagnosed with edema disease and Postweaning diarrhea. Clin Diagn Lab Immunol. 2001;8(1):143–9. https://doi.org/10.1128/CDLI.8.1.143-149.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang W, Zhao M, Ruesch L, Omot A, Francis D. Prevalence of virulence genes in Escherichia coli strains recently isolated from young pigs with diarrhea in the US. Vet Microbiol. 2007;123(1–3):145–52. https://doi.org/10.1016/j.vetmic.2007.02.018.
Article
CAS
PubMed
Google Scholar
Zhao L, Chen X, Xu X, Song G, Liu X. Analysis of the AIDA-I gene sequence and prevalence in Escherichia coli isolates from pigs with post-weaning diarrhoea and oedema disease. Vet J. 2009;180(1):124–9. https://doi.org/10.1016/j.tvjl.2007.10.021.
Article
CAS
PubMed
Google Scholar
Duan Q, Xia P, Nandre R, Zhang W, Zhu G. Review of newly identified functions associated with the heat-labile toxin of enterotoxigenic Escherichia coli. Front Cell Infect Microbiol. 2019;9:292. https://doi.org/10.3389/fcimb.2019.00292.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vila J, Sáez-López E, Johnson JR, Römling U, Dobrindt U, Cantón R, et al. Escherichia coli: an old friend with new tidings. FEMS Microbiol Rev. 2016;40(4):437–63. https://doi.org/10.1093/femsre/fuw005.
Article
CAS
PubMed
Google Scholar
Imberechts H, De Greve H, Lintermans P. The pathogenesis of edema disease in pigs. A review Vet Microbiol. 1992;31(2–3):221–33. https://doi.org/10.1016/0378-1135(92)90080-d.
Article
CAS
PubMed
Google Scholar
Kusumoto M, Hikoda Y, Fujii Y, Murata M, Miyoshi H, Ogura Y, et al. Emergence of a multidrug-resistant Shiga toxin-producing enterotoxigenic Escherichia coliLineage in diseased swine in Japan. J Clin Microbiol. 2016;54(4):1074–81. https://doi.org/10.1128/JCM.03141-15.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kwon D, Kim O, Chae C. Prevalence of genotypes for fimbriae and enterotoxins and of O serogroups in Escherichia coli isolated from diarrheic piglets in Korea. J Vet Diagn Investig. 1999;11(2):146–51. https://doi.org/10.1177/104063879901100207.
Article
CAS
Google Scholar
Fairbrother JM, Gyles CL. Diseases of Swine Chapter: Colibacillosis. 9th ed; Straw BE, Zimmerman JJ, D' Allaire S, Taylor DJ, editors. Oxford: Wiley-Blackwell; 2006. pp. 387-95.
Chattaway MA, Day M, Mtwale J, White E, Rogers J, Day M, et al. Clonality, virulence and antimicrobial resistance of enteroaggregative Escherichia coli from Mirzapur, Bangladesh. J Med Microbiol. 2017;66(10):1429–35. https://doi.org/10.1099/jmm.0.000594.
Article
PubMed
PubMed Central
Google Scholar
Yu F, Chen X, Zheng S, Han D, Wang Y, Wang R, et al. Prevalence and genetic diversity of human diarrheagenic Escherichia coli isolates by multilocus sequence typing. Int J Infect Dis. 2018;67:7–13. https://doi.org/10.1016/j.ijid.2017.11.025.
Article
CAS
PubMed
Google Scholar
Savin M, Bierbaum G, Kreyenschmidt J, Schmithausen RM, Sib E, Schmoger S, et al. Clinically relevant Escherichia coli isolates from process waters and wastewater of poultry and pig slaughterhouses in Germany. Microorganisms. 2021;9(4):1–17. https://doi.org/10.3390/microorganisms9040698.
Article
CAS
Google Scholar
Crémet L, Caroff N, Giraudeau C, Dauvergne S, Lepelletier D, Reynaud A, et al. Occurrence of ST23 complex phylogroup a Escherichia coli isolates producing extended-spectrum AmpC β-lactamase in a French hospital. Antimicrob Agents Chemother. 2010;54(5):2216–8. https://doi.org/10.1128/AAC.01580-09.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V, Demarty R, Alonso MP, Caniça MM, et al. Intercontinental emergence of Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother. 2008;61(2):273–81. https://doi.org/10.1093/jac/dkm464.
Article
CAS
PubMed
Google Scholar
Yang C, Shao W, Wei L, Chen L, Zhu A, Pan Z. Subtyping Salmonella isolated from pet dogs with multilocus sequence typing (MLST) and clustered regularly interspaced short palindromic repeats (CRISPRs). AMB Express. 2021;11(1):60. https://doi.org/10.1186/s13568-021-01221-9.
Article
CAS
PubMed
PubMed Central
Google Scholar