Vorholt JA. Microbial life in the phyllosphere. Nat Rev Microbiol. 2012;10:828–40. https://doi.org/10.1038/nrmicro2910.
Article
CAS
PubMed
Google Scholar
Philippot L, Raaijmakers JM, Lemanceau P, van der Putten WH. Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol. 2013;11:789–99. https://doi.org/10.1038/nrmicro3109.
Article
CAS
PubMed
Google Scholar
Zmora N, Suez J, Elinav E. You are what you eat: diet, health and the gut microbiota. Nat Rev Gastroenterol Hepatol. 2019;16:35–56. https://doi.org/10.1038/s41575-018-0061-2.
Article
CAS
PubMed
Google Scholar
Mercado-Blanco J, Bakker PAHM. Interactions between plants and beneficial Pseudomonas spp.: exploiting bacterial traits for crop protection. Antonie Van Leeuwenhoek. 2007;92:367–89. https://doi.org/10.1007/s10482-007-9167-1.
Article
PubMed
Google Scholar
Blanco Y, Legaz M-E, Vicente C. Gluconacetobacter diazotrophicus, a sugarcane endophyte, inhibits xanthan production by sugarcane-invading Xanthomonas albilineans. J Plant Interact. 2010;5:241–8. https://doi.org/10.1080/17429141003753273.
Article
CAS
Google Scholar
Innerebner G, Knief C, Vorholt JA. Protection of Arabidopsis thaliana against leaf-pathogenic Pseudomonas syringae by Sphingomonas strains in a controlled model system. Appl Environ Microbiol. 2011;77:3202–10. https://doi.org/10.1128/AEM.00133-11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Piñón D, Casas M, Blanch M, Fontaniella B, Blanco Y, Vicente C, et al. Gluconacetobacter diazotrophicus, a sugar cane endosymbiont, produces a bacteriocin against Xanthomonas albilineans, a sugar cane pathogen. Res Microbiol. 2002;153:345–51. https://doi.org/10.1016/S0923-2508(02)01336-0.
Article
PubMed
Google Scholar
Hussain SS, Mehnaz S, Siddique KHM. Harnessing the plant microbiome for improved abiotic stress tolerance. Singapore: Springer; 2018. p. 21–43. https://doi.org/10.1007/978-981-10-5514-0_2.
Book
Google Scholar
Vargas L, Santa Brígida AB, Mota Filho JP, de Carvalho TG, Rojas CA, Vaneechoutte D, et al. Drought tolerance conferred to sugarcane by association with Gluconacetobacter diazotrophicus: a transcriptomic view of hormone pathways. Plos One. 2014;9:e114744. https://doi.org/10.1371/journal.pone.0114744.
Article
CAS
PubMed
PubMed Central
Google Scholar
Castiglioni P, Warner D, Bensen RJ, Anstrom DC, Harrison J, Stoecker M, et al. Bacterial RNA chaperones confer abiotic stress tolerance in plants and improved grain yield in maize under water-limited conditions. Plant Physiol. 2008;147:446–55. https://doi.org/10.1104/pp.108.118828.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bell TH, Joly S, Pitre FE, Yergeau E. Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol. 2014;32:271–80. https://doi.org/10.1016/J.TIBTECH.2014.02.008.
Article
CAS
PubMed
Google Scholar
Richardson AE, Barea J-M, McNeill AM, Prigent-Combaret C. Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil. 2009;321:305–39. https://doi.org/10.1007/s11104-009-9895-2.
Article
CAS
Google Scholar
Hunter PJ, Teakle GR, Bending GD. Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica. Front Plant Sci. 2014;5:27. https://doi.org/10.3389/fpls.2014.00027.20.
Article
PubMed
PubMed Central
Google Scholar
Ali B, Sabri AN, Ljung K, Hasnain S. Auxin production by plant associated bacteria: impact on endogenous IAA content and growth of Triticum aestivum L. Lett Appl Microbiol. 2009;48:542–7. https://doi.org/10.1111/j.1472-765X.2009.02565.x.
Article
CAS
PubMed
Google Scholar
Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ - Sci. 2014;26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001.
Article
Google Scholar
Lugtenberg B, Kamilova F. Plant-growth-promoting rhizobacteria. Annu Rev Microbiol. 2009;63:541–56. https://doi.org/10.1146/annurev.micro.62.081307.162918.
Article
CAS
PubMed
Google Scholar
Seabra JEA, Macedo IC. Comparative analysis for power generation and ethanol production from sugarcane residual biomass in Brazil. Energy Policy. 2011;39:421–8. https://doi.org/10.1016/J.ENPOL.2010.10.019.
Article
CAS
Google Scholar
Toju H, Peay KG, Yamamichi M, Narisawa K, Hiruma K, Naito K, et al. Core microbiomes for sustainable agroecosystems. Nat Plants. 2018;4:247–57. https://doi.org/10.1038/s41477-018-0139-4.
Article
PubMed
Google Scholar
Abbott KC, Eppinga MB, Umbanhowar J, Baudena M, Bever JD. Microbiome influence on host community dynamics: conceptual integration of microbiome feedback with classical host–microbe theory. Ecol Lett. 2021;24:2796–811.
Article
Google Scholar
Hanbing L, Kezhi B, Yuxi H, Tingyun Kuang JL. Differences between the number and structure of chloroplasts in leaves and in non-leaf organs of wheat. Belgian J Bot. 2001;134:121–6.
Google Scholar
Shearman JR, Sonthirod C, Naktang C, Pootakham W, Yoocha T, Sangsrakru D, et al. The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads. Sci Rep. 2016;6:31533. https://doi.org/10.1038/srep31533.
Article
CAS
PubMed
PubMed Central
Google Scholar
de Souza RSC, Okura VK, Armanhi JSL, Jorrín B, Lozano N, da Silva MJ, et al. Unlocking the bacterial and fungal communities assemblages of sugarcane microbiome. Sci Rep. 2016;6:28774. https://doi.org/10.1038/srep28774.
Article
CAS
PubMed
PubMed Central
Google Scholar
Logan DC. Plant mitochondria. Hoboken: John Wiley & Sons, Inc.; 2007. https://doi.org/10.1002/9780470986592.
Book
Google Scholar
Boffey SA, Leech RM. Chloroplast DNA levels and the control of chloroplast division in light-grown wheat leaves. Plant Physiol. 1982;69:1387–91. https://doi.org/10.1104/pp.69.6.1387.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leite DCC, Grandis A, Tavares EQP, Piovezani AR, Pattathil S, Avci U, et al. Cell wall changes during the formation of aerenchyma in sugarcane roots. Ann Bot. 2017;120:693–708. https://doi.org/10.1093/aob/mcx050.
Article
CAS
PubMed
PubMed Central
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high- resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dong M, Yang Z, Cheng G, Peng L, Xu Q, Xu J. Diversity of the bacterial microbiome in the roots of four saccharum species: S. spontaneum, S. robustum, S. barberi, and S. officinarum. Front Microbiol. 2018;9:267. https://doi.org/10.3389/fmicb.2018.00267.
Article
PubMed
PubMed Central
Google Scholar
Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, et al. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol. 2013;4:1111–9. https://doi.org/10.1111/2041-210X.12114.
Article
PubMed Central
Google Scholar
Eren AM, Morrison HG, Lescault PJ, Reveillaud J, Vineis JH, Sogin ML. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 2015;9:968–79. https://doi.org/10.1038/ismej.2014.195.
Article
CAS
PubMed
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational 21 taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43. https://doi.org/10.1038/ismej.2017.119.
Article
PubMed
PubMed Central
Google Scholar
Edgar RC, Flyvbjerg H. Octave plots for visualizing diversity of microbial OTUs. https://doi.org/10.1101/389833.
Wagner MR, Lundberg DS, Del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun. 2016;7:1–15. https://doi.org/10.1038/ncomms12151.
Article
CAS
Google Scholar
Eyre AW, Wang M, Oh Y, Dean RA. Identification and characterization of the Core Rice seed microbiome. Phytobiomes J. 2019;3:148–57.
Article
Google Scholar
Bálint M, Tiffin P, Hallström B, O’Hara RB, Olson MS, Fankhauser JD, et al. Host genotype shapes the foliar fungal microbiome of balsam poplar (Populus balsamifera). Plos One. 2013;8:e53987.
Article
Google Scholar
Liu F, Hewezi T, Lebeis SL, Pantalone V, Grewal PS, Staton ME. Soil indigenous microbiome and plant genotypes cooperatively modify soybean rhizosphere microbiome assembly. BMC Microbiol. 2019;19:1–19.
Article
Google Scholar
Peiffer JA, Spor A, Koren O, Jin Z, Tringe SG, Dangl JL, et al. Diversity and heritability of the maize rhizosphere microbiome under field conditions. Proc Natl Acad Sci U S A. 2013;110:6548–53.
Article
CAS
Google Scholar
Quecine MC, Silva TM, Carvalho G, Saito S, Mondin M, Teixeira-Silva NS, et al. A stable Leifsonia xyli subsp. xyli GFP-tagged strain reveals a new colonization niche in sugarcane tissues. Plant Pathol. 2016;65:154–62. https://doi.org/10.1111/ppa.12397.
Article
CAS
Google Scholar
Mills L, Leaman TM, Taghavi SM, Shackel L, Dominiak BC, Taylor PWJ, et al. Leifsonia xyli- like bacteria are endophytes of grasses in eastern Australia. Australas Plant Pathol. 2001;30:145–51. https://doi.org/10.1071/AP01003.
Article
Google Scholar
Battu L, Ulaganathan K. Whole genome sequencing and identification of host-interactive genes in the rice endophytic Leifsonia sp. ku-ls. Funct Integr Genomics. 2020;20:237–43. https://doi.org/10.1007/s10142-019-00713-z.
Article
CAS
PubMed
Google Scholar
Li T-Y, Zeng H-L, Ping Y, Lin H, Fan X-L, Guo Z-G, et al. Construction of a stable expression vector for Leifsonia xyli subsp. cynodontis and its application in studying the effect of the bacterium as an endophytic bacterium in rice. FEMS Microbiol Lett. 2007;267:176–83. https://doi.org/10.1111/j.1574-6968.2006.00551.x.
Article
CAS
PubMed
Google Scholar
Backman PA, Sikora RA. Endophytes: an emerging tool for biological control. Biol Control. 2008;46:1–3.
Article
Google Scholar
Davis MJ, Gillaspie AG, Harris RW, Lawson RH. Ratoon stunting disease of sugarcane: Isolation of the causal bacterium. Science (80). 1980;210:1365–7. https://doi.org/10.1126/science.210.4476.1365.
Article
CAS
Google Scholar
Comstock JC. Ratoon stunting disease. Sugar Tech. 2002;4:1–6. https://doi.org/10.1007/bf02956872.
Article
Google Scholar
Baldani JI, Baldani VLD, Seldin L, Dobereiner J. Characterization of Herbaspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Bacteriol. 1986;36:86–93. https://doi.org/10.1099/00207713-36-1-86.
Article
CAS
Google Scholar
Olivares FL, Baldani VLD, Reis VM, Baldani JI, Döbereiner J. Occurrence of the endophytic diazotrophs Herbaspirillum spp. in roots, stems, and leaves, predominantly of Gramineae. Biol Fertil Soils. 1996;21:197–200. https://doi.org/10.1007/BF00335935.
Article
Google Scholar
James EK, Olivares FL, Baldani JI, Döbereiner J. Herbaspirillum, an endophytic diazotroph colonizing vascular tissue 3Sorghum bicolor L. Moench J Exp Bot. 1997;48:785–98. https://doi.org/10.1093/jxb/48.3.785.
Article
CAS
Google Scholar
Monteiro-Vitorello C, Zerillo M, Van Sluys M-A, Camargo LEA. Genome sequence-based insights into the biology of the sugarcane pathogen Leifsonia xyli subsp. xyli. In: Jackson RW, editor. Plant pathogenic Bacteria - genomics and molecular biology: Caister Academic Press; 2009. p. 135–46.
Google Scholar
Sachdev D. Characterization of plant-growth-promoting traits of Acinetobacter species isolated from rhizosphere of Pennisetum glaucum. Artic J Microbiol Biotechnol. 2011. https://doi.org/10.4014/jmb.1012.12006.
Kuklinsky-Sobral J, Araújo WL, Mendes R, Geraldi IO, Pizzirani-Kleiner AA, Azevedo JL. 22 Isolation and characterization of soybean-associated bacteria and their potential for plant growth promotion. Environ Microbiol. 2004;6:1244–51. https://doi.org/10.1111/j.1462-2920.2004.00658.x.
Article
CAS
PubMed
Google Scholar
Suzuki W, Sugawara M, Miwa K, Morikawa M. Plant growth-promoting bacterium Acinetobacter calcoaceticus P23 increases the chlorophyll content of the monocot Lemna minor (duckweed) and the dicot Lactuca sativa (lettuce). J Biosci Bioeng. 2014;118:41–4.
Article
CAS
Google Scholar
Kang SM, Joo GJ, Hamayun M, Na CI, Shin DH, Kim HY, et al. Gibberellin production and phosphate solubilization by newly isolated strain of Acinetobacter calcoaceticus and its effect on plant growth. Biotechnol Lett. 2009;31:277–81. https://doi.org/10.1007/s10529-008-9867-2.
Article
CAS
PubMed
Google Scholar
Patel P, Shah R, Modi K. Isolation and characterization of plant growth promoting potential of Acinetobacter sp. RSC7 isolated from Saccharum officinarum cultivar co 671. J Exp Biol Agric Sci. 2017;5:483–91.
Article
CAS
Google Scholar
Pons I, Renoz F, Noël C, Hance T. Circulation of the cultivable symbiont serratia symbiotica in aphids is mediated by plants. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.00764.
Gosalbes MJ, Lamelas A, Moya A, Latorre A. The striking case of tryptophan provision in the cedar aphid Cinara cedri. J Bacteriol. 2008;190:6026–9. https://doi.org/10.1128/JB.00525-08.
Article
CAS
PubMed
PubMed Central
Google Scholar
Burke G, Fiehn O, Moran N. Effects of facultative symbionts and heat stress on the metabolome of pea aphids. ISME J. 2010;4:242–52. https://doi.org/10.1038/ismej.2009.114.
Article
PubMed
Google Scholar
Oliver KM, Russell JA, Morant NA, Hunter MS. Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A. 2003;100:1803–7. https://doi.org/10.1073/pnas.0335320100.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Andersen KS, Kirkegaard RH, Karst SM, Albertsen M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data. bioRxiv (preprint). 2018;299537. https://doi.org/10.1101/299537.