Jansson JK, Hofmockel KS. Soil microbiomes and climate change. Nat Rev Microbiol. 2020;18(1):35–46.
Article
CAS
PubMed
Google Scholar
Meisner A, Jacquiod S, Snoek BL. Ten Hooven FC, van der Putten WH. Drought legacy effects on the composition of soil fungal and prokaryote communities. Front Microbiol. 2018;9(MAR):294.
Article
PubMed
PubMed Central
Google Scholar
Bardgett RD, Caruso T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philos Trans R Soc B Biol Sci. 2020;375:20190112.
Article
CAS
Google Scholar
Elad Y, Pertot I. Climate change impacts on plant pathogens and plant diseases. J Crop Improv. 2014;28(1):99–139.
Article
CAS
Google Scholar
Rolfe SA, Griffiths J, Ton J. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr Opin Microbiol. 2019;49:73–82.
Article
CAS
PubMed
Google Scholar
Vives-Peris V, de Ollas C, Gómez-Cadenas A, Pérez-Clemente RM. Root exudates: from plant to rhizosphere and beyond. Plant Cell Rep. 2020;39:3–17.
Article
CAS
PubMed
Google Scholar
Fierer N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat Rev Microbiol. 2017;15(10):579–90.
Article
CAS
PubMed
Google Scholar
He D, Shen W, Eberwein J, Zhao Q, Ren L, Wu QL. Diversity and co-occurrence network of soil fungi are more responsive than those of bacteria to shifts in precipitation seasonality in a subtropical forest. Soil Biol Biochem. 2017;115:499–510.
Article
CAS
Google Scholar
Preusser S, Poll C, Marhan S, Angst G, Mueller CW, Bachmann J, et al. Fungi and bacteria respond differently to changing environmental conditions within a soil profile. Soil Biol Biochem. 2019;137:107543.
Article
CAS
Google Scholar
Sun Y, Chen HYH, Jin L, Wang C, Zhang R, Ruan H, et al. Drought stress induced increase of fungi:bacteria ratio in a poplar plantation. Catena. 2020;193:104607.
Article
CAS
Google Scholar
Liu S, Wang H, Tian P, Yao X, Sun H, Wang Q, et al. Decoupled diversity patterns in bacteria and fungi across continental forest ecosystems. Soil Biol Biochem. 2020;144:107763.
Article
CAS
Google Scholar
Bastías DA, Johnson LJ, Card SD. Symbiotic bacteria of plant-associated fungi: friends or foes? Curr Opin Plant Biol. 2020;56:1–8.
Article
PubMed
CAS
Google Scholar
Martin FM, Uroz S, Barker DG. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science. 2017;356(819):eaad4501.
Article
PubMed
CAS
Google Scholar
Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, et al. Bacterial-fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev. 2018;42(3):335–52.
Article
CAS
PubMed
Google Scholar
Lies A, Delteil A, Prin Y, Duponnois R. Using mycorrhiza helper microorganisms (MHM) to improve the mycorrhizal efficiency on plant growth. In: Role of Rhizospheric Microbes in Soil: Stress Management and Agricultural Sustainability. Singapore: Springer; 2018. p. 277–98.
Reis F, Magalhães AP, Tavares RM, Baptista P, Lino-Neto T. Bacteria could help ectomycorrhizae establishment under climate variations. Mycorrhiza. 2021;1:3.
Google Scholar
Jiang F, Zhang L, Zhou J, George TS, Feng G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 2021;230(1):304–15.
Article
CAS
PubMed
Google Scholar
Liu Y, Sun Q, Li J, Lian B. Bacterial diversity among the fruit bodies of ectomycorrhizal and saprophytic fungi and their corresponding hyphosphere soils. Sci Rep. 2018;8(1):1–10.
Google Scholar
Trivedi P, Leach JE, Tringe SG, Sa T, Singh BK. Plant–microbiome interactions: from community assembly to plant health. Nat Rev Microbiol. 2020;18(11):607–21.
Article
CAS
PubMed
Google Scholar
Lionello P, Scarascia L. The relation between climate change in the Mediterranean region and global warming. Reg Environ Chang. 2018;18(5):1481–93.
Article
Google Scholar
Cramer W, Guiot J, Fader M, Garrabou J, Gattuso JP, Iglesias A, et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat Clim Chang. 2018;8(11):972–80.
Article
Google Scholar
Gauquelin T, Michon G, Joffre R, Duponnois R, Génin D, Fady B, et al. Mediterranean forests, land use and climate change: a social-ecological perspective. Reg Environ Chang. 2018;18(3):623–36.
Article
Google Scholar
Moricca S, Linaldeddu BT, Ginetti B, Scanu B, Franceschini A, Ragazzi A. Endemic and emerging pathogens threatening cork oak trees: management options for conserving a unique forest ecosystem. Plant Dis. 2016;100(11):2184–93.
Article
PubMed
Google Scholar
Bettenfeld P, Fontaine F, Trouvelot S, Fernandez O, Courty PE. Woody plant declines. What’s wrong with the microbiome? Trends Plant Sci. 2020;xx(xx):1–14.
Google Scholar
Barrico L, Rodríguez-Echeverría S, Freitas H. Diversity of soil basidiomycete communities associated with Quercus suber L. in Portuguese montados. Eur J Soil Biol. 2010;46(5):280–7.
Article
Google Scholar
Fumi MD, Mazzoleni V, Novelli E, Galli R, Busconi M, Blaghen M, et al. Pedologic characteristics and fungi community in unmanaged cork oak forest soil of two Mediterranean regions : Sardinia and Tunisia. Integr Prot Oak For IOBC WPRS Bull. 2014;101:31–8.
Google Scholar
Maghnia FZ, Sanguin H, Abbas Y, Verdinelli M, Kerdouh B, El Ghachtouli N, et al. Impact of cork oak management on the ectomycorrhizal fungal diversity associated with Quercus suber in the Mâamora forest (Morocco). Comptes Rendus Biol. 2017;340(5):298–305.
Article
Google Scholar
Reis F, Valdiviesso T, Varela C, Tavares RM, Baptista P, Lino-Neto T. Ectomycorrhizal fungal diversity and community structure associated with cork oak in different landscapes. Mycorrhiza. 2018;28(4):357–68.
Article
PubMed
Google Scholar
Maghnia FZ, Abbas Y, Mahé F, Kerdouh B, Tournier E, Ouadji M, et al. Habitat- and soil-related drivers of the root-associated fungal community of Quercus suber in the northern Moroccan forest. PLoS One. 2017;12(11):1–17.
Article
CAS
Google Scholar
Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, et al. Unravelling soil fungal communities from different mediterranean land-use backgrounds. PLoS One. 2012;7(4):e34847.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tardy V, Spor A, Mathieu O, Lévèque J, Terrat S, Plassart P, et al. Shifts in microbial diversity through land use intensity as drivers of carbon mineralization in soil. Soil Biol Biochem. 2015;90:204–13.
Article
CAS
Google Scholar
Dubey A, Malla MA, Khan F, Chowdhary K, Yadav S, Kumar A, et al. Soil microbiome: a key player for conservation of soil health under changing climate. Biodivers Conserv. 2019;28(8–9):2405–29.
Article
Google Scholar
Emberger L. Sur une formule climatique et ses applications en botanique. La Meteorol. 1932;92:423–32.
Google Scholar
Emberger L. Une classification biogéographique des climats. In: Recueil des Travaux des Laboratoires de Botanique. Série Bota. Montpellier: Recueil des Travaux des Laboratoires de Botanique, Géologie et Zoologie de la Faculté des Sciences de L’Université de Montpellier; 1955. p. 3–43.
Google Scholar
Haghighi AT, Zaki NA, Rossi PM, Noori R, Hekmatzadeh AA, Saremi H, et al. Unsustainability syndrome-from meteorological to agricultural drought in arid and semi-arid regions. Water (Switzerland). 2020;12(3):838.
Google Scholar
Abatzoglou JT, Dobrowski SZ, Parks SA, Hegewisch KC. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci Data. 2018;5(1):1–12.
Article
Google Scholar
QGIS Development Team. QGIS: a free and open source Geographic Information (version 13.14.16-Pi). 2020. http://www.qgis.org.
Mitchell JI, Zuccaro A. Sequences, the environment and fungi. Mycologist. 2006;20(2):62–74.
Article
Google Scholar
Chelius MKK, Triplett EWW. The diversity of archaea and bacteria in association with the roots of Zea mays L. Microb Ecol. 2001;41(3):252–63.
Article
CAS
PubMed
Google Scholar
Tedersoo L, Bahram M, Põlme S, Kõljalg U, Yorou NS, Wijesundera R, et al. Global diversity and geography of soil fungi. Science. 2014;346(6213):1256688.
Article
PubMed
CAS
Google Scholar
Bodenhausen N, Horton MW, Bergelson J. Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana. PLoS One. 2013;8(2):e56329.
Article
CAS
PubMed
PubMed Central
Google Scholar
Illumina Inc. 16s metagenomic sequencing library preparation. 2013. https://support.illumina.com/documents/documentation/chemistry_documentation/16s/16s-metagenomic-library-prep-guide-15044223-b.pdf.
Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27(6):863–4. Available from: http://prinseq.sourceforge.net/.
Article
CAS
PubMed
PubMed Central
Google Scholar
Joshi NA, Fass JN. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33). 2011. https://github.com/najoshi/sickle.
Nurk S, Bankevich A, Antipov D, Gurevich A, Korobeynikov A, Lapidus A, et al. Assembling genomes and mini-metagenomes from highly chimeric reads. In: M D, Jiang R, Sun F, Zhang X, editors. Research in Computational Molecular Biology. vol 7821. Berlin: Springer; 2013. p. 158–70.
Chapter
Google Scholar
Edgar RCR. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1. Available from: http://www.drive5.com/usearch.
Article
CAS
Google Scholar
Aronesty E. ea-utils: command-line tools for processing biological sequencing data. 2011. https://github.com/ExpressionAnalysis/ea-utils.
Albanese D, Fontana P, De FC, Cavalieri D, Donati C. MICCA: a complete and accurate software for taxonomic profiling of metagenomic data. Sci Rep. 2015;5(1):1–7.
Article
CAS
Google Scholar
Kõljalg U, Nilsson HR, Schigel D, Tedersoo L, Larsson K-H, May TW, et al. The taxon hypothesis paradigm—on the unambiguous detection and communication of taxa. Microorganisms. 2020;8(12):1910.
Article
PubMed Central
CAS
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6.
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
R core team. R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2019. Available from: https://www.r-project.org/.
Google Scholar
Lahti L, Shetty S, Turaga N, Leung E, Gilmore R, Salojärvi J, et al. Tools for microbiome analysis in R. Microbiome package (version 1.17.42). 2017. http://microbiome.github.com/microbiome.
Hughes JB, Bohannan BJM. Section 7 update: application of ecological diversity statistics in microbial ecology. In: Kowalchuk GA, de Bruijn FJ, Head IM, Akkermans AD, van Elsas JD, editors. Molecular Microbial Ecology Manual. 2nd ed. Dordrecht: Springer Netherlands; 2008. p. 3223–46.
Chapter
Google Scholar
Magurran AE. Ecological diversity and its measurement. In: Ecological Diversity and Its Measurement. Dordrecht: Springer Netherlands; 1988.
Chapter
Google Scholar
Hill TCJ, Walsh KA, Harris JA, Moffett BF. Using ecological diversity measures with bacterial communities. FEMS Microbiol Ecol. 2003;43(1):1–11.
Article
CAS
PubMed
Google Scholar
Kassambara A. ggpubr: “ggplot2” Based Publication Ready Plots (version 0.4.0). 2020. https://cran.r-project.org/package=ggpubr.
McMurdie PJ, Holmes S. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. Watson M, editor. PLoS One. 2013;8(4):e61217.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package (version 2.5–7). 2020. https://CRAN.R-project.org/package=vegan.
Kruskal JB, Wish M. In: Uslaner EM, editor. Multidimensional scaling. 07–001 ed. Beverly Hills and London: SAGE Publications; 1978.
Chapter
Google Scholar
Henderson PA, Seaby RMH. Community analysis package. Lymington: Pisces Conservation Ltd; 2014.
Google Scholar
Chambers JM. SoDA: functions and examples for “software for data analysis” (version 1.0-6.1). 2020. https://cran.r-project.org/package=SoDA.
Macia-Vicente JG. comecol: Community ecology analysis (version 0.0.0.9000). 2020. https://github.com/jgmv/comecol.
Warnes GR, Bolker B, Bonebakker L, Gentleman R, Huber W, Liaw A, et al. gplots: Various R programming tools for plotting data (version 3.1.1). 2020. https://cran.r-project.org/package=gplots.
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60.
Article
PubMed
PubMed Central
Google Scholar
Harrell Jr FE. Hmisc: Harrell Miscellaneous. 2021. https://cran.r-project.org/package=Hmisc.
Bates D, Maechler M. Matrix: sparse and dense matrix classes and methods. 2019. https://cran.r-project.org/package=Matrix.
Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the International AAAI Conference on Weblogs and Social Media. San Jose: AAAI Press; 2009;3(1):361–2.
Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–8.
Article
Google Scholar
Louca S, Parfrey LW, Doebeli M. Decoupling function and taxonomy in the global ocean microbiome. Science. 2016;353(6305):1272–7.
Article
CAS
PubMed
Google Scholar
Wei T, Simko V. R package 'corrplot': visualization of a Correlation Matrix (version 0.84). 2017. https://github.com/taiyun/corrplot.
Hofer U. The majority is uncultured. Nat Rev Microbiol. 2018;16:716–7.
Article
CAS
PubMed
Google Scholar
Hurdeal VG, Gentekaki E, Hyde KD, Jeewon R. Where are the basal fungi? Current status on diversity, ecology, evolution, and taxonomy. Biologia (Bratisl). 2021;76(2):421–40.
Article
Google Scholar
Carson JK, Gonzalez-Quiñones V, Murphy DV, Hinz C, Shaw JA, Gleeson DB. Low pore connectivity increases bacterial diversity in soil. Appl Environ Microbiol. 2010;76(12):3936–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Reis F, Soares-Castro P, Costa D, Tavares RM, Baptista P, Santos PM, et al. Climatic impacts on the bacterial community profiles of cork oak soils. Appl Soil Ecol. 2019;143(November 2018):89–97.
Article
Google Scholar
Větrovský T, Kohout P, Kopecký M, Machac A, Man M, Bahnmann BD, et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat Commun. 2019;10(1):1–9.
Article
CAS
Google Scholar
Talley SM, Coley PD, Kursar TA. The effects of weather on fungal abundance and richness among 25 communities in the intermountain west. BMC Ecol. 2002;2(1):1–11.
Article
Google Scholar
Zhao Q, Jian S, Nunan N, Maestre FT, Tedersoo L, He J, et al. Altered precipitation seasonality impacts the dominant fungal but rare bacterial taxa in subtropical forest soils. Biol Fertil Soils. 2017;53(2):231–45.
Article
Google Scholar
Reis F, Tavares RM, Baptista P, Lino-Neto T. Mycorrhization of Fagaceae forests within Mediterranean ecosystems. In: Mycorrhiza - function, diversity, state of the art. 4th ed. New York: Springer International Publishing; 2017. p. 75–97.
Chapter
Google Scholar
Baptista P, Reis F, Pereira E, Tavares RM, Santos PM, Richard F, et al. Soil DNA pyrosequencing and fruitbody surveys reveal contrasting diversity for various fungal ecological guilds in chestnut orchards. Environ Microbiol Rep. 2015;7(6):946–54.
Article
CAS
PubMed
Google Scholar
Wu BW, Gao C, Chen L, Buscot F, Goldmann K, Purahong W, et al. Host phylogeny is a major determinant of fagaceae-associated ectomycorrhizal fungal community assembly at a regional scale. Front Microbiol. 2018;9:2409.
Article
PubMed
PubMed Central
Google Scholar
Maghnia FZ, Abbas Y, Mahé F, Prin Y, El Ghachtouli N, Duponnois R, et al. The rhizosphere microbiome: a key component of sustainable cork oak forests in trouble. For Ecol Manag. 2019;434(December 2018):29–39.
Article
Google Scholar
Habtewold JZ, Helgason BL, Yanni SF, Janzen HH, Ellert BH, Gregorich EG. Warming effects on the structure of bacterial and fungal communities in diverse soils. Appl Soil Ecol. 2021;163(August 2020):103973.
Article
Google Scholar
Truong C, Gabbarini LA, Corrales A, Mujic AB, Escobar JM, Moretto A, et al. Ectomycorrhizal fungi and soil enzymes exhibit contrasting patterns along elevation gradients in southern Patagonia. New Phytol. 2019;222(4):1936–50.
Article
CAS
PubMed
Google Scholar
Ren C, Liu W, Zhao F, Zhong Z, Deng J, Han X, et al. Soil bacterial and fungal diversity and compositions respond differently to forest development. Catena. 2019;181:104071.
Article
CAS
Google Scholar
Suarez C, Ratering S, Schäfer J, Schnell S. Ancylobacter pratisalsi sp. nov. with plant growth promotion abilities from the rhizosphere of Plantago winteri Wirtg. Int J Syst Evol Microbiol. 2017;67(11):4500–6.
Article
CAS
PubMed
Google Scholar
Lindström K, Mousavi SA. Effectiveness of nitrogen fixation in rhizobia. Microb Biotechnol. 2020;13(5):1314–35.
Article
PubMed
CAS
Google Scholar
Dukunde A, Schneider D, Schmidt M, Veldkamp E, Daniel R. Tree species shape soil bacterial community structure and function in temperate deciduous forests. Front Microbiol. 2019;10:1519.
Article
PubMed
PubMed Central
Google Scholar
de Vries FT, Griffiths RI, Bailey M, Craig H, Girlanda M, Gweon HS, et al. Soil bacterial networks are less stable under drought than fungal networks. Nat Commun. 2018;9(1):3033.
Article
PubMed
PubMed Central
CAS
Google Scholar
Shen C, Gunina A, Luo Y, Wang J, He JZ, Kuzyakov Y, et al. Contrasting patterns and drivers of soil bacterial and fungal diversity across a mountain gradient. Environ Microbiol. 2020;22(8):3287–301.
Article
PubMed
Google Scholar
Yu WC, Zhou X, Guo D, Hua ZJ, Yan L, Zhong FG, et al. Soil pH is the primary factor driving the distribution and function of microorganisms in farmland soils in northeastern China. Ann Microbiol. 2019;69(13):1461–73.
Article
CAS
Google Scholar
Xu X, Chen C, Zhang Z, Sun Z, Chen Y, Jiang J, et al. The influence of environmental factors on communities of arbuscular mycorrhizal fungi associated with Chenopodium ambrosioides revealed by MiSeq sequencing investigation. Sci Rep. 2017;7(1):1–11.
CAS
Google Scholar
Seaton FM, George PBL, Lebron I, Jones DL, Creer S, Robinson DA. Soil textural heterogeneity impacts bacterial but not fungal diversity. Soil Biol Biochem. 2020;144:107766.
Article
CAS
Google Scholar
Vera A, Moreno JL, Siles JA, López-Mondejar R, Zhou Y, Li Y, et al. Interactive impacts of boron and organic amendments in plant-soil microbial relationships. J Hazard Mater. 2021;408:124939.
Article
CAS
PubMed
Google Scholar
Vera A, Moreno JL, García C, Morais D, Bastida F. Boron in soil: the impacts on the biomass, composition and activity of the soil microbial community. Sci Total Environ. 2019;685:564–73.
Article
CAS
PubMed
Google Scholar
Wu L, Ma H, Zhao Q, Zhang S, Wei W, Ding X. Changes in soil bacterial community and enzyme activity under five years straw returning in paddy soil. Eur J Soil Biol. 2020;100:103215.
Article
CAS
Google Scholar
Xu Z, Zhang T, Wang S, Wang Z. Soil pH and C/N ratio determines spatial variations in soil microbial communities and enzymatic activities of the agricultural ecosystems in Northeast China: Jilin Province case. Appl Soil Ecol. 2020;155:103629.
Article
Google Scholar
Luo Y, Iqbal A, He L, Zhao Q, Wei S, Ali I, et al. Long-term no-tillage and straw retention management enhances soil bacterial community diversity and soil properties in southern China. Agronomy. 2020;10(9):1233.
Article
CAS
Google Scholar
Soleimani A, Hosseini SM, Massah Bavani AR, Jafari M, Francaviglia R. Influence of land use and land cover change on soil organic carbon and microbial activity in the forests of northern Iran. Catena. 2019;177:227–37.
Article
CAS
Google Scholar
Odriozola I, Abrego N, Tláskal V, Zrůstová P, Morais D, Větrovský T, et al. Fungal communities are important determinants of bacterial community composition in deadwood. Shade A, editor. mSystems. 2021;6(1):e01017–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Collado E, Bonet JA, Camarero JJ, Egli S, Peter M, Salo K, et al. Mushroom productivity trends in relation to tree growth and climate across different European forest biomes. Sci Total Environ. 2019;689:602–15.
Article
CAS
PubMed
Google Scholar
Müller K, Kubsch N, Marhan S, Mayer-Gruner P, Nassal P, Schneider D, et al. Saprotrophic and ectomycorrhizal fungi contribute differentially to organic P mobilization in beech-dominated forest ecosystems. Front For Glob Chang. 2020;3:47.
Article
Google Scholar
Maillard F, Kennedy PG, Adamczyk B, Heinonsalo J, Buée M. Root presence modifies the long-term decomposition dynamics of fungal necromass and the associated microbial communities in a boreal forest. Mol Ecol. 2021;30(8):1921–35.
Article
CAS
PubMed
Google Scholar