Gimonneau G, Tchioffo MT, Abate L, Boissiere A, Awono-Ambene PH, Nsango SE, et al. Composition of Anopheles coluzzii and Anopheles gambiae microbiota from larval to adult stages. Infect Genet Evol. 2014. https://doi.org/10.1016/j.meegid.2014.09.029.
Article
PubMed
Google Scholar
Berhanu A, Abera A, Nega D, Mekasha S, Fentaw S, Assefa A, Gebrewolde G, Wuletaw Y, Assefa A, Dugassa S, Tekie H, Tasew G. Isolation and identification of microflora from the midgut and salivary glands of Anopheles species in malaria endemic areas of Ethiopia. BMC Microbiol. 2019. https://doi.org/10.1186/s12866-019-1456-0.
Article
PubMed
PubMed Central
Google Scholar
Douglas AE. Lessons from studying insect symbioses. Cell Host Microbe. 2011. https://doi.org/10.1016/j.chom.2011.09.001.
Article
PubMed
PubMed Central
Google Scholar
Coon KL, Vogel KJ, Brown MR, Strand MR. Mosquitoes rely on their gut microbiota for development. Mol Ecol. 2014. https://doi.org/10.1111/mec.12771.
Article
PubMed
PubMed Central
Google Scholar
Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. Microbiome. 2021. https://doi.org/10.1186/s40168-021-01073-2.
Article
PubMed
PubMed Central
Google Scholar
Bai L, Wang L, Vega-Rodríguez J, Wang G, Wang S. A Gut Symbiotic Bacterium Serratia marcescens Renders Mosquito Resistance to Plasmodium infection Through Activation of Mosquito Immune Responses. Front Microbiol. 2019. https://doi.org/10.3389/fmicb.2019.01580.
Article
PubMed
PubMed Central
Google Scholar
Hughes GL, Koga R, Xue P, Fukatsu T. Rasgon JL Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog. 2011. https://doi.org/10.1371/journal.ppat.1002043.
Article
PubMed
PubMed Central
Google Scholar
van den Hurk AF, Hall-Mendelin S, Pyke AT, Frentiu FD, McElroy K, Day A, Higgs S, O’Neill SL. Impact of Wolbachia on infection with chikungunya and yellow fever viruses in the mosquito vector Aedes aegypti. PLoS Negl Trop Dis. 2012. https://doi.org/10.1371/journal.pntd.0001892.
Article
PubMed
PubMed Central
Google Scholar
Dutra HL, Rocha MN, Dias FB, Mansur SB, Caragata EP, Moreira LA. Wolbachia blocks currently circulating Zika Virus isolates in Brazilian Aedes aegypti mosquitoes. Cell Host Microbe. 2016. https://doi.org/10.1016/j.chom.2016.04.021.
Article
PubMed
PubMed Central
Google Scholar
Rocha LL, Colares GB, Nogueira VL, Paes FA, Melo VM. Distinct habitats select particular bacterial communities in mangrove sediments. Int J Microbiol. 2016. https://doi.org/10.1155/2016/3435809.
Article
PubMed
PubMed Central
Google Scholar
Kešnerová L, Emery O, Troilo M, Liberti J, Erkosar B, Engel P. Gut microbiota structure differs between honeybees in winter and summer. ISME J. 2020. https://doi.org/10.1038/s41396-019-0568-8.
Article
PubMed
Google Scholar
Minard G, Mavingui P, Moro CV. Diversity and function of bacterial microbiota in the mosquito holobiont. Parasit Vectors. 2013. https://doi.org/10.1186/1756-3305-6-146.
Article
PubMed
PubMed Central
Google Scholar
Muturi EJ, Lagos-kutz D, Dunlap C, Ramirez JL, Rooney AP, Hartman GL, et al. Mosquito microbiota cluster by host sampling location. Parasit Vectors. 2018. https://doi.org/10.1186/s13071-018-3036-9.
Article
PubMed
PubMed Central
Google Scholar
Lee JM, Yek SH, Wilson RF, Rahman S. Characterization of the Aedes albopictus (Diptera: Culicidae) holobiome: bacterial composition across land use type and mosquito sex in Malaysia. Acta Trop. 2020. https://doi.org/10.1016/j.actatropica.2020.105683.
Article
PubMed
Google Scholar
Saab SA, Dohna H, Nilsson LKJ, Onorati P, Nakhleh J, Tereni O, et al. The environment and species affect gut bacteria composition in mosquitoes. Sci Rep. 2020. https://doi.org/10.1038/s41598-020-60075-6.
Article
PubMed
PubMed Central
Google Scholar
Zouache K, Michelland RJ, Failloux AB, Grundmann GL, Mavingui P. Chikungunya virus impacts the diversity of symbiotic bacteria in mosquito vector. Mol Ecol. 2012. https://doi.org/10.1111/j.1365-294X.2012.05526.x.
Article
PubMed
Google Scholar
Rodgers FH, Gendrin M, Wyer CAS, Christophides GK. Microbiota-induced peritrophic matrix regulates midgut homeostasis and prevents systemic infection of malaria vector mosquitoes. PLoS Pathog. 2017. https://doi.org/10.1371/journal.ppat.1006391.
Article
PubMed
PubMed Central
Google Scholar
Villegas LEM, Campolina TB, Barnabe NR, Orfano AS, Chaves BA, Norris DE, Pimenta PFP, Secundino NFC. Zika virus infection modulates the bacterial diversity associated with Aedes aegypti as revealed by metagenomic analysis. PLoS ONE. 2018. https://doi.org/10.1371/journal.pone.0190352.
Article
PubMed
PubMed Central
Google Scholar
Boissière A, Tchioffo MT, Bachar D, Abate L, Marie A, Nsango SE, Shahbazkia HR, Awono-Ambene PH, Levashina EA, Christen R, Morlais I. Midgut microbiota of the malaria mosquito vector Anopheles gambiae and interactions with Plasmodium falciparum infection. PLoS Pathog. 2012. https://doi.org/10.1371/journal.ppat.1002742.
Article
PubMed
PubMed Central
Google Scholar
Chavshin AR, Oshaghi MA, Vatandoost H, Yakhchali B, Zarenejad F, Terenius O. Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi. Parasit Vectors. 2015. https://doi.org/10.1186/s13071-015-0635-6.
Article
PubMed
PubMed Central
Google Scholar
Lindh JM, Borg-Karlson AK, Faye I. Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. Acta Trop. 2008. https://doi.org/10.1016/j.actatropica.2008.06.008.
Article
PubMed
Google Scholar
Wang Y, Gilbreath TM 3rd, Kukutla P, Yan G, Xu J. Dynamic gut microbiome across life history of the malaria mosquito Anopheles gambiae in Kenya. PLoS ONE. 2011. https://doi.org/10.1371/journal.pone.0024767.
Article
PubMed
PubMed Central
Google Scholar
Muturi EJ, Dunlap C, Ramirez JL, Rooney AP, Kim CH. Host blood-meal source has a strong impact on gut microbiota of Aedes aegypti. FEMS Microbiol Ecol. 2019. https://doi.org/10.1093/femsec/fiy213.
Article
PubMed
Google Scholar
Bascuñán P, Niño-Garcia JP, Galeano-Castañeda Y, Serre D, Correa MM. Factors shaping the gut bacterial community assembly in two main Colombian malaria vectors. Microbiome. 2018. https://doi.org/10.1186/s40168-018-0528-y.
Article
PubMed
PubMed Central
Google Scholar
Akorli J, Gendrin M, Pels NA, Yeboah-Manu D, Christophides GK, Wilson MD. Seasonality and Locality Affect the Diversity of Anopheles gambiae and Anopheles coluzzii Midgut Microbiota from Ghana. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0157529.
Article
PubMed
PubMed Central
Google Scholar
Tchouassi DP, Muturi EJ, Arum SO, Kim CH, Fields CJ, Torto B. Host species and site of collection shape the microbiota of Rift Valley fever vectors in Kenya. PLoS Negl Trop Dis. 2019. https://doi.org/10.1371/journal.pntd.0007361.
Article
PubMed
PubMed Central
Google Scholar
Wilkerson RC, Linton YM, Strickman D. Mosquitoes of the World, vol. 2. Baltimore: Johns Hopkins University Press; 2021.
Arnell JH. Mosquito Studies (Diptera, Culicidae). XXXII. A revision of the genus Haemagogus. Contrib Am Entomol Inst. 1973;10(2):1–174.
Chadee DD, Ganesh R, Hingwan JO, Tikasingh ES. Seasonal abundance, biting cycle and parity of the mosquito Haemagogus leucocelaenus in Trinidad. West Indies Med Vet Entomol. 1995. https://doi.org/10.1111/j.1365-2915.1995.tb00006.x.
Article
PubMed
Google Scholar
Forattini OP, Gomes AC. Biting activity of Aedes scapularis (Rondani) and Haemagogus mosquitoes in southern Brazil (Diptera: Culicidae). Rev Saude Publica. 1988. https://doi.org/10.1590/s0034-89101988000200003.
Article
PubMed
Google Scholar
Zavortink TJ. Mosquito studies (Diptera, Culicidae) XXVIII. The New World species formerly placed in Aedes (Finlaya). Contrib Am Ent Inst. 1972;8(3):1–206.
Consoli RAGB, Lourenço-de-Oliveira R. Principais mosquitos de importância sanitária no Brasil. Rio de Janeiro: Editora Fiocruz; 1994.
Book
Google Scholar
Mucci LF, Medeiros-Sousa AR, Ceretti-Júnior W, Fernandes A, Camargo AA, Evangelista E, de Oliveira CR, Montes J, Teixeira RS, Marrelli MT. Haemagogus leucocelaenus and Other Mosquitoes Potentially Associated With Sylvatic Yellow Fever In Cantareira State Park In the São Paulo Metropolitan Area. Brazil J Am Mosq Control Assoc. 2016. https://doi.org/10.2987/16-6587.1.
Article
PubMed
Google Scholar
Silva NIO, Sacchetto L, de Rezende IM, Trindade GS, LaBeaud AD, de Thoisy B, Drumond BP. Recent sylvatic yellow fever virus transmission in Brazil: the news from an old disease. Virol J. 2020. https://doi.org/10.1186/s12985-019-1277-7.
Article
PubMed
PubMed Central
Google Scholar
Vasconcelos PF. Yellow fever in Brazil: thoughts and hypotheses on the emergence in previously free areas. Rev Saude Publica. 2010. https://doi.org/10.1590/s0034-89102010005000046.
Article
PubMed
Google Scholar
Abreu FVS, Ribeiro IP, Ferreira-de-Brito A, Santos AACD, Miranda RM, Bonelly IS, Neves MSAS, Bersot MI, Santos TPD, Gomes MQ, Silva JLD, Romano APM, Carvalho RG, Said RFDC, Ribeiro MS, Laperrière RDC, Fonseca EOL, Falqueto A, Paupy C, Failloux AB, Moutailler S, Castro MG, Gómez MM, Motta MA, Bonaldo MC, Lourenço-de-Oliveira R. Haemagogus leucocelaenus and Haemagogus janthinomys are the primary vectors in the major yellow fever outbreak in Brazil, 2016–2018. Emerg Microbes Infect. 2019. https://doi.org/10.1080/22221751.2019.1568180.
Article
PubMed
PubMed Central
Google Scholar
Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic Forest: How much is left, and how is the remaining forest distributed? Implications for conservation Biol Conserv. 2009. https://doi.org/10.1016/j.biocon.2009.02.021.
Article
Google Scholar
Forattini OP, Massad E. Culicidae vectors and anthropic changes in a southern Brazil natural ecosystem. Ecosyst Health. 1998;4:9–19.
Article
Google Scholar
Laporta GZ, Ribeiro MC, Ramos DG, Sallum MA. Spatial distribution of arboviral mosquito vectors (Diptera, Culicidae) in Vale do Ribeira in the South-eastern Brazilian Atlantic Forest. Cad Saude Publica. 2012. https://doi.org/10.1590/s0102-311x2012000200003.
Article
PubMed
Google Scholar
Iversson LB, da Rosa AP, de Rosa JT. Estudos sorológicos para pesquisa de anticorpos de arbovirus em população humana da região do Vale do Ribeira. II - Inquérito em pacientes do Hospital Regional de Pariquera-Açú, 1980. Rev Saude Publica. 1981; doi:https://doi.org/10.1590/s0034-89101981000600002.
Romano-Lieber NS, Iversson LB. Inquérito soroepidemiológico para pesquisa de infecções por arbovírus em moradores de reserva ecológica. Rev Saude Publica. 2000. https://doi.org/10.1590/s0034-89102000000300005.
Article
PubMed
Google Scholar
Iversson LB, Travassos da Rosa AP, Rosa MD. Ocorrência recente de infecção humana por arbovírus Rocio na região do Vale do Ribeira [Recent occurrence of human infection by Rocio arbovirus in the Valley of Ribeira region]. Rev Inst Med Trop Sao Paulo. 1989; doi:https://doi.org/10.1590/s0036-46651989000100006.
de Souza Lopes O, de Abreu Sacchetta L, Francy DB, Jakob WL, Calisher CH. Emergence of a new arbovirus disease in Brazil. III. Isolation of Rocio virus from Psorophora Ferox (Humboldt, 1819). Am J Epidemiol. 1981; doi:https://doi.org/10.1093/oxfordjournals.aje.a113075.
Forattini OP. Culicidologia Médica: Identificaçäo, Biologia e Epidemiologia, vol. 2. São Paulo: Editora da Universidade de São Paulo; 2002.
Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011. https://doi.org/10.1093/bioinformatics/btr507.
Article
PubMed
PubMed Central
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu YX, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019. https://doi.org/10.1038/s41587-019-0209-9.
Article
PubMed
PubMed Central
Google Scholar
Cardoso J da C, de Almeida MA, dos Santos E, da Fonseca DF, Sallum MA, Noll CA, Monteiro HA, Cruz AC, Carvalho VL, Pinto EV, Castro FC, Nunes Neto JP, Segura MN, Vasconcelos PF. Yellow fever virus in Haemagogus leucocelaenus and Aedes serratus mosquitoes, southern Brazil, 2008. Emerg Infect Dis. 2010; doi:https://doi.org/10.3201/eid1612.100608.
Muturi EJ, Ramirez JL, Rooney AP, Kim CH. Comparative analysis of gut microbiota of mosquito communities in central Illinois. PLoSNegl Trop Dis. 2017. https://doi.org/10.1371/journal.pntd.0005377.
Article
Google Scholar
Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017. https://doi.org/10.1038/ismej.2017.119.
Article
PubMed
PubMed Central
Google Scholar
Ali R, Jayaraj J, Mohammed A, et al. Characterization of the virome associated with Haemagogus mosquitoes in Trinidad. West Indies Sci Rep. 2021. https://doi.org/10.1038/s41598-021-95842-6.
Article
PubMed
Google Scholar
Ogunlade ST, Meehan MT, Adekunle AI, Rojas DP, Adegboye OA, McBryde ES. A Review: Aedes-Borne Arboviral Infections, Controls and Wolbachia-Based Strategies. Vaccines (Basel). 2021. https://doi.org/10.3390/vaccines9010032.
Article
Google Scholar
Rossi P, Ricci I, Cappelli A, Damiani C, Ulissi U, Mancini MV, Valzano M, Capone A, Epis S, Crotti E, Chouaia B, Scuppa P, Joshi D, Xi Z, Mandrioli M, Sacchi L, O’Neill SL, Favia G. Mutual exclusion of Asaia and Wolbachia in the reproductive organs of mosquito vectors. Parasit Vectors. 2015. https://doi.org/10.1186/s13071-015-0888-0.
Article
PubMed
PubMed Central
Google Scholar
Samaddar N, Paul A, Chakravorty S, Chakraborty W, Mukherjee J, Chowdhuri D, Gachhui R. Nitrogen fixation in Asaia sp. (family Acetobacteraceae). Curr Microbiol. 2011; doi:https://doi.org/10.1007/s00284-011-9968-3.
Yadav KK, Bora A, Datta S, Chandel K, Gogoi HK, Prasad GB, Veer V. Molecular characterization of midgut microbiota of Aedes albopictus and Aedes aegypti from Arunachal Pradesh. India Parasit Vectors. 2015. https://doi.org/10.1186/s13071-015-1252-0.
Article
PubMed
Google Scholar
Kramer LD, Ciota AT. Dissecting vectorial capacity for mosquito-borne viruses. Curr Opin Virol. 2015. https://doi.org/10.1016/j.coviro.2015.10.003.
Article
PubMed
PubMed Central
Google Scholar
Gendrin M, Rodgers FH, Yerbanga RS, Ouédraogo JB, Basáñez MG, Cohuet A, Christophides GK. Antibiotics in ingested human blood affect the mosquito microbiota and capacity to transmit malaria. Nat Commun. 2015. https://doi.org/10.1038/ncomms6921.
Article
PubMed
Google Scholar
Gaio A de O, Gusmão DS, Santos AV, Berbert-Molina MA, Pimenta PF, Lemos FJ. Contribution of midgut bacteria to blood digestion and egg production in aedes aegypti (diptera: culicidae) (L.). Parasit Vectors. 2011; doi:https://doi.org/10.1186/1756-3305-4-105.
Attardo GM, Hansen IA, Raikhel AS. Nutritional regulation of vitellogenesis in mosquitoes: implications for anautogeny. Insect Biochem Mol Biol. 2005. https://doi.org/10.1016/j.ibmb.2005.02.013.
Article
PubMed
Google Scholar
Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, Liu H, Liu Q, Zhao T, Chen X, Zhou H, Wang P, Cheng G. A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host Microbe. 2019. https://doi.org/10.1016/j.chom.2018.11.004.
Article
PubMed
PubMed Central
Google Scholar
Jourand P, Giraud E, Béna G, Sy A, Willems A, Gillis M, Dreyfus B, de Lajudie P. Methylobacterium nodulans sp. nov., for a group of aerobic, facultatively methylotrophic, legume root-nodule-forming and nitrogen-fixing bacteria. Int J Syst Evol Microbiol. 2004; doi:https://doi.org/10.1099/ijs.0.02902-0.
Mwadondo EM, Ghilamicael A, Alakonya AE, Kasili RW. Midgut bacterial diversity analysis of laboratory reared and wild Anopheles gambiae and Culex quinquefasciatus mosquitoes in Kenya. J Microbiol Res. 2017;11(Suppl 29):1171–83.
CAS
Google Scholar
Wilk-da-Silva R, Mucci LF, Ceretti-Junior W, Duarte AMRC, Marrelli MT, Medeiros-Sousa AR. Influence of landscape composition and configuration on the richness and abundance of potential sylvatic yellow fever vectors in a remnant of Atlantic Forest in the city of São Paulo. Brazil Acta Trop. 2020. https://doi.org/10.1016/j.actatropica.2020.105385.
Article
PubMed
Google Scholar
Wilk-da-Silva R, Medeiros-Sousa AR, Laporta GZ, Mucci LF, Prist PR, Marrelli MT. The influence of landscape structure on the dispersal pattern of yellow fever virus in the state of São Paulo. Acta Trop. 2022. https://doi.org/10.1016/j.actatropica.2022.106333.
Article
PubMed
Google Scholar