Sung H, Ferlay J, Siegel RL, LaversanneSoerjomataram MI, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;0(0):1–41.
Google Scholar
Sauer AG, Siegel RL, Jemal A, Fedewa SA. Current prevalence of major cancer risk factors and screening test use in the United States: Disparities by education and race/ethnicity. Cancer Epidemiol Biomarkers Prev. 2019;28(4):629–42.
Article
Google Scholar
de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Heal. 2020;8(2):e180–90. https://doi.org/10.1016/S2214-109X(19)30488-7.
Article
Google Scholar
Pagano JS, Blaser M, Buendia MA, Damania B, Khalili K, Raab-Traub N, et al. Infectious agents and cancer: Criteria for a causal relation. Semin Cancer Biol. 2004;14(6):453–71.
Article
CAS
PubMed
Google Scholar
Dalmasso G, Cougnoux A, Delmas J, Darfeuille-Michaud A, Bonnet R. The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes. 2015;5(5):675–80.
Article
Google Scholar
Howley PM. Gordon Wilson Lecture: Infectious Disease Causes of Cancer: Opportunities for Prevention and Treatment. Trans Am Clin Climatol Assoc. 2015;126:117–32.
PubMed
PubMed Central
Google Scholar
Mégraud F. A humble bacterium sweeps this year’s Nobel Prize. Cell. 2005;123(6):975–6.
Article
PubMed
Google Scholar
Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22:299–306. https://doi.org/10.1101/gr.126516.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012;22(2):292–8. https://doi.org/10.1101/gr.126573.111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Abed J, Maalouf N, Parhi L, Chaushu S, Mandelboim O, Bachrach G. Tumor targeting by Fusobacterium nucleatum: A Pilot Study and future Perspectives. Front Cell Infect Microbiol. 2017;7(JUN):1–5.
Google Scholar
Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, et al. Human oral microbiome and prospective risk for pancreatic cancer: A population-based nested case-control study. Gut. 2018;67(1):120–7.
Article
CAS
PubMed
Google Scholar
Inaba H, Sugita H, Kuboniwa M, Iwai S, Hamada M, Noda T, et al. Porphyromonas gingivalis promotes invasion of oral squamous cell carcinoma through induction of proMMP9 and its activation. Cell Microbiol. 2014;16(1):131–45.
Article
CAS
PubMed
Google Scholar
Wu S, Rhee KJ, Albesiano E, Rabizadeh S, Wu X, Yen HR, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zamani S, Taslimi R, Sarabi A, Jasemi S, Sechi LA, Feizabadi MM. Enterotoxigenic Bacteroides fragilis: A Possible Etiological Candidate for Bacterially-Induced Colorectal Precancerous and Cancerous Lesions. Front Cell Infect Microbiol. 2020;9(January):1–7.
Google Scholar
Ho JTK, Chan GCF, Li JCB. Systemic effects of gut microbiota and its relationship with disease and modulation. BMC Immunol. 2015;16(1):1–6.
Article
Google Scholar
Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science (80- ). 2016;352(6285):539–44.
Article
CAS
Google Scholar
Buc E, Dubois D, Sauvanet P, Raisch J, Delmas J, Darfeuille-Michaud A, et al. High Prevalence of Mucosa-Associated E coli Producing Cyclomodulin and Genotoxin in Colon Cancer. PLoS One. 2013;8(2):e56964.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, et al. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res. 2014;20(4):859–67.
Article
PubMed
Google Scholar
Bullman S, Pedamallu CS, Sicinska E, Clancy TE, Zhang X, Cai D, et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science (80- ). 2017;358(6369):1443–8.
Article
CAS
Google Scholar
Bakhti SZ, Latifi-Navid S, Zahri S. Unique constellations of five polymorphic sites of Helicobacter pylori vacA and cagA status associated with risk of gastric cancer. Infect Genet Evol. 2019;2020(79): 104167. https://doi.org/10.1016/j.meegid.2019.104167.
Article
CAS
Google Scholar
Purcell RV, Pearson J, Aitchison A, Dixon L, Frizelle FA, Keenan JI. Colonization with enterotoxigenic Bacteroides fragilis is associated with early-stage colorectal neoplasia. PLoS ONE. 2017;12(2):1–10.
Article
Google Scholar
Yang Y, Weng W, Peng J, Hong L, Yang L, Toiyama Y, et al. Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating TLR4 Signaling to NFκB, Upregulating Expression of microRNA-21. Gastroenterology. 2017;152(4):851-866 e24. https://doi.org/10.1053/j.gastro.2016.11.018.
Article
CAS
PubMed
Google Scholar
Chang WL, Yeh YC, Sheu BS. The impacts of H. pylori virulence factors on the development of gastroduodenal diseases. J Biomed Sci. 2018;25(1):1–9.
Article
CAS
Google Scholar
Yang WS, Park SO, Yoon AR, Yoo JY, Kim MK, Yun CO, et al. Suicide cancer gene therapy using pore-forming toxin, streptolysin O. Mol Cancer Ther. 2006;5(6):1610–9.
Article
CAS
PubMed
Google Scholar
Liu X, Jiang S, Piao L, Yuan F. Radiotherapy combined with an engineered Salmonella typhimurium inhibits tumor growth in a mouse model of colon cancer. Exp Anim. 2016;65(4):413–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pahle J, Menzel L, Niesler N, Kobelt D, Aumann J, Rivera M, et al. Rapid eradication of colon carcinoma by Clostridium perfringens Enterotoxin suicidal gene therapy. BMC Cancer. 2017;17(1):1–14.
Article
Google Scholar
Wang WK, Chiang WC, Lai CH, Lee CH. Salmonella-Mediated Cytolethal Distending Toxin Transfer Inhibits Tumor Growth. Hum Gene Ther. 2018;29(11):1327–35.
Article
CAS
PubMed
Google Scholar
Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.
Article
CAS
PubMed
PubMed Central
Google Scholar
Forster SC, Kumar N, Anonye BO, Almeida A, Viciani E, Stares MD, et al. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat Biotechnol. 2019;37(2):186–92. https://doi.org/10.1038/s41587-018-0009-7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dethlefsen L, Huse S, Sogin M L, Relman D.A. The Pervasive Effects of an antibiotic on the Human Gut Microbiota, as Revealed by Deep 16S rRNA Sequencing. Plos Biol. 2008;6(11):e280. https://doi.org/10.1371/journal.pbio.0060280.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arthur JC, Perez-chanona E, Mühlbauer M, Tomkovich S, Uronis JM, Fan T, et al. Intestinal inflammation targets cancer-inducing activity of the microbiota. Science. 2013;338(6103):120–3. https://doi.org/10.1126/science.1224820.
Article
CAS
Google Scholar
Ahn J, Sinha R, Pei Z, Dominianni C, Wu J, Shi J, et al. Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst. 2013;105(24):1907–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hibberd AA, Lyra A, Ouwehand AC, Rolny P, Lindegren H, Cedgård L, et al. Intestinal microbiota is altered in patients with colon cancer and modified by probiotic intervention. BMJ Open Gastroenterol. 2017;4(1):e000145.
Article
PubMed
PubMed Central
Google Scholar
Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8(4):403–16. https://doi.org/10.1158/2159-8290.CD-17-1134.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nejman D, Livayatan I, Fuks G, Gavert N, Zwang Y, Geller LT, et al. The human microbiome is composed of tumour type-specific intracellular bacteria. Science. 2020;368(6494):973–80. https://doi.org/10.1126/science.aay9189.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei MY, Shi S, Liang C, Meng QC, Hua J, Zhang YY, et al. The microbiota and microbiome in pancreatic cancer: More influential than expected. Mol Cancer. 2019;18(1):1–15.
Article
CAS
Google Scholar
Caselli E, Soffritti I, D’Accolti M, Piva I, Greco P, Bonaccorsi G. Atopobium vaginae and Porphyromonas somerae induce proinflammatory cytokines expression in endometrial cells: A possible implication for endometrial cancer? Cancer Manag Res. 2019;11:8571–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hieken TJ, Chen J, Hoskin TL, Walther-Antonio M, Johnson S, Ramaker S, et al. The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep. 2016;6(July):1–10. https://doi.org/10.1038/srep30751.
Article
CAS
Google Scholar
Meng S, Chen B, Yang J, Wang J, Zhu D, Meng Q, et al. Study of microbiomes in aseptically collected samples of human breast tissue using needle biopsy and the potential role of in situ tissue microbiomes for promoting malignancy. Front Oncol. 2018;8:1–10.
Article
Google Scholar
Fernández MF, Reina-Pérez I, Astorga JM, Rodríguez-Carrillo A, Plaza-Díaz J, Fontana L. Breast cancer and its relationship with the microbiota. Int J Environ Res Public Health. 2018;15(8):1–20.
Article
Google Scholar
Hilty M, Burke C, Pedro H, Cardenas P, Bush A, Bossley C, et al. Disordered microbial communities in asthmatic airways. PLoS One. 2010;5(1):e8578.
Article
PubMed
PubMed Central
Google Scholar
Segal LN, Clemente JC, Tsay J-CJ, Koralov SB, Keller BC, Wu BG, et al. Enrichment of the lung microbiome with oral taxa is associated with lung inflammation of a Th17 phenotype. Nat Microbiol. 2016;1:16031. https://doi.org/10.1038/microbiol.2016.31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim HJ, Kim YS, Kim KH, Choi JP, Kim YK, Yun S, et al. The microbiome of the lung and its extracellular vesicles in nonsmokers, healthy smokers and COPD patients. Exp Mol Med. 2017;49(4):e316.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lee SH, Sung JY, Yong D, Kim SY, Song JH, Chung KS, et al. Characterisation of microbiome in bronchoalveolar lavage fluid of patients with lung cancer comparing with benign mass like lesions. Lung Cancer. 2016;102:89–95. https://doi.org/10.1016/j.lungcan.2016.10.016.
Article
PubMed
Google Scholar
Jin C, Lagoudas G, Zhao C, Bullmann S, Bhutkar A, Hu B, et al. Commensal Microbiota Promote Lung Cancer Development via γδ T Cells. Cell. 2019;176(5):9981013.e16. https://doi.org/10.1016/j.cell.2018.12.040.
Article
CAS
Google Scholar
Thomas RM, Jobin C. Is the oncobiome mirage real. Trends Cancer. 2016;1:517–45 (https://www.ncbi.nlm.nih.gov/pubmed/26568984).
Google Scholar
Kiss B, Mikó E, Seb˝O É, Toth J, Ujlaki G, Szabó J, et al. Oncobiosis and microbial metabolite signaling in pancreatic adenocarcinoma. Cancers (Basel). 2020;12(5):1–27.
Article
Google Scholar
Gori S, Inno A, Belluomini L, Bocus P, Bisoffi Z, Russo A, et al. Gut microbiota and cancer: How gut microbiota modulates activity, efficacy and toxicity of antitumoral therapy. Crit Rev Oncol Hematol. 2019;143:139–47. https://doi.org/10.1016/j.critrevonc.2019.09.003.
Article
PubMed
Google Scholar
Sun Z, Xiong CL, Teh SW, Lim JCW, Kumar S, Thilakavathy K. Mechanisms of Oral Bacterial Virulence Factors in Pancreatic Cancer. Front Cell Infect Microbiol. 2019;9(December):1–7.
Google Scholar
Lawrence GW, Begley M, Cotter PD, Guinane CM. Potential use of biotherapeutic bacteria to target colorectal cancer-associated taxa. Int J Mol Sci. 2020;21(3):924.
Article
CAS
PubMed Central
Google Scholar
Cheng WT, Kantilal HK, Davamani F. The mechanism of bacteroides fragilis toxin contributes to colon cancer formation. Malaysian J Med Sci. 2020;27(4):9–21.
Article
Google Scholar
Goodman B, Gardner H. The microbiome and cancer. J Pathol. 2018;244(5):667–76.
Article
PubMed
Google Scholar
Kipanyula MJ, Seke Etet PF, Vecchio L, Farahna M, Nukenine EN, Nwabo Kamdje AH. Signaling pathways bridging microbial-triggered inflammation and cancer. Cell Signal. 2013;25(2):403–16. https://doi.org/10.1016/j.cellsig.2012.10.014.
Article
CAS
PubMed
Google Scholar
Herrero R, Park JY, Forman D. The fight against gastric cancer - The IARC Working Group report. Best Pract Res Clin Gastroenterol. 2014;28(6):1107–14. https://doi.org/10.1016/j.bpg.2014.10.003.
Article
PubMed
Google Scholar
Neal JT, Peterson TS, Kent ML, Guillemin KH. pylori virulence factor CagA increases intestinal cell proliferation by Wnt pathway activation in a transgenic zebrafish model. DMM Dis Model Mech. 2013;6(3):802–10.
CAS
PubMed
Google Scholar
Censini S, Lange C, Xiang Z, Crabtree JE, Ghiara P, Borodovsky M, et al. Cag, a pathogenicity island of Helicobacter pylori, encodes type I-specific and disease-associated virulence factors. Proc Natl Acad Sci U S A. 1996;93(25):14648–53.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yamazaki S, Yamakawa A, Okuda T, Ohtani M, Suto H, Ito Y, et al. Distinct diversity of vacA, cagA, and cagE genes of Helicobacter pylori associated with peptic ulcer in Japan. J Clin Microbiol. 2005;43(8):3906–16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Enroth H, Kraaz W, Engstrand L, Nyren O, Rohan T. Helicobacter pylori strain types and risk of gastric cancer: A case-control study. Cancer Epidemiol Biomarkers Prev. 2000;9(9):981–5.
CAS
PubMed
Google Scholar
Franco AT, Johnston E, Krishna U, Yamaoka Y, Israel DA, Nagy TA, et al. Regulation of gastric carcinogenesis by Helicobacter pylori virulence factors. Cancer Res. 2008;68(2):379–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yong X, Tang B, Li BS, Xie R, Hu CJ, Luo G, et al. Helicobacter pylori virulence factor CagA promotes tumorigenesis of gastric cancer via multiple signaling pathways. Cell Commun Signal. 2015;13(1):1–13. https://doi.org/10.1186/s12964-015-0111-0.
Article
CAS
Google Scholar
Teymournejad O, Mobarez AM, Hassan ZM, Talebi Bezmin Abadi A. Binding of the Helicobacter pylori OipA causes apoptosis of host cells via modulation of Bax/Bcl-2 levels. Sci Rep. 2017;7(1):1–8. https://doi.org/10.1038/s41598-017-08176-7.
Article
CAS
Google Scholar
Rubinstein MR, Wang Y, Liu W, Hao Y, Cai G, Han YW, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesion. Cell Host Microbe. 2013;14(2):195–206. https://doi.org/10.1016/j.chom.2013.07.012.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wassenaar TME. coli and colorectal cancer: a complex relationship that deserves a critical mindset. Crit Rev Microbiol. 2018;44(5):619–32. https://doi.org/10.1080/1040841X.2018.1481013.
Article
PubMed
Google Scholar
Wu S, Morin PJ, Maouyo D, Sears CL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology. 2003;124(2):392–400.
Article
CAS
PubMed
Google Scholar
Öğrendik M. Oral bacteria in pancreatic cancer: Mutagenesis of the p53 tumour suppressor gene. Int J Clin Exp Pathol. 2015;8(9):11835–6.
PubMed
PubMed Central
Google Scholar
Whitmore SE, Lamont RJ. Oral Bacteria and Cancer. PLoS Pathog. 2014;10(3):1–3.
Article
Google Scholar
Bartpho TS, Wattanawongdon W, Tongtawee T, Paoin C, Kangwantas K, Dechsukhum C. Precancerous Gastric Lesions with Helicobacter pylori vacA +/ babA 2+/ oipA + Genotype Increase the Risk of Gastric Cancer. Biomed Res Int. 2020;2020:7243029.
Article
PubMed
PubMed Central
Google Scholar
Ohnishi N, Yuasa H, Tanaka S. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Chemtracts. 2008;21(3):121–3.
Google Scholar
Kwok T, Zabler D, Urman S, Rohde M, Hartig R, Wessler S, et al. Helicobacter exploits integrin for type IV secretion and kinase activation. Nature. 2007;449:862–6. https://doi.org/10.1038/nature06187.
Article
CAS
PubMed
Google Scholar
Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL. An overview of Helicobacter pylori VacA toxin biology. Toxins (Basel). 2016;8(6):1–21.
Article
Google Scholar
Tombola F, Morbiato L, Del Giudice G, Rappuoli R, Zoratti M, Papini E. The Helicobacter pylori VacA toxin is a urea permease that promotes urea diffusion across epithelia. J Clin Invest. 2001;108(6):929–37.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oldani A, Cormont M, Hofman V, Chiozzi V, Oregioni O, Canonici A, et al. Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLoS Pathog. 2009;5(10):e1000603.
Article
PubMed
PubMed Central
Google Scholar
Akada JK, Aoki H, Torigoe Y, Kitagawa T, Kurazono H, Hoshida H, et al. Helicobacter pylori CagA inhibits endocytosis of cytotoxin VacA in host cells. DMM Dis Model Mech. 2010;3(9–10):605–17.
Article
CAS
PubMed
Google Scholar
Yamaoka Y, Kwon DH, Graham DY. A Mr 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc Natl Acad Sci U S A. 2000;97(13):7533–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Epplein M, Pawlita M, Michel A, Peek RM, Cai Q, Blot WJ. Helicobacter pylori protein-specific antibodies and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev. 2013;22(11):1964–74.
Article
CAS
PubMed
Google Scholar
Butt J, Jenab M, Pawlita M, Tjonneland A, Kyro C, Boutron-Rualt M-C, et al. Antibody Responses to Helicobacter pylori and Risk of Developing Colorectal Cancer in a European Cohort. Cancer Epidemiol Biomarkers Prev. 2020;29(7):1475–81. https://doi.org/10.1158/1055-9965.EPI-19-1545.
Article
CAS
PubMed
Google Scholar
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.
Article
PubMed
Google Scholar
Yan X, Liu L, Li H, Qin H, Sun Z. Clinical significance of Fusobacterium nucleatum, epithelial–mesenchymal transition, and cancer stem cell markers in stage III /IV colorectal cancer patients. Onco Targets Ther. 2017;10:5031–46.
Article
PubMed
PubMed Central
Google Scholar
Burns MB, Lynch J, Starr TK, Knights D, Blekhman R. Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment. Genome Med. 2015;7(1):1–12. https://doi.org/10.1186/s13073-015-0177-8.
Article
CAS
Google Scholar
Ganesan K, Guo S, Fayyaz S, Zhang G, Xu B. Targeting programmed fusobacterium nucleatum fap2 for colorectal cancer therapy. Cancers (Basel). 2019;11(10):13–5.
Article
Google Scholar
Han YW, Ikegami A, Rajanna C, Kawsar HI, Zhou Y, Li M, et al. Identification and characterization of a novel adhesin unique to oral fusobacteria. J Bacteriol. 2005;187(15):5330–40.
Article
CAS
PubMed
PubMed Central
Google Scholar
Coppenhagen-Glazer S, Sol A, Abed J, Naor R, Zhang X, Han YW, et al. Fap2 of Fusobacterium nucleatum is a galactose-inhibitable adhesin involved in coaggregation, cell adhesion, and preterm birth. Infect Immun. 2015;83(3):1104–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaplan CW, Ma X, Paranjpe A, Jewett A, Lux R, Kinder-Haake S, et al. Fusobacterium nucleatum outer membrane proteins Fap2 and RadD induce cell death in human lymphocytes. Infect Immun. 2010;78(11):4773–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tomkovich S, Yang Y, Winglee K, Gauthier J, Mühlbauer M, Sun X, et al. Locoregional effects of microbiota in a preclinical model of colon carcinogenesis. Cancer Res. 2017;77(10):2620–32.
Article
CAS
PubMed
PubMed Central
Google Scholar
Conlin A, Smith G, Carey FA, Wolf CR, Steele RJC. The prognostic significance of K-ras, p53, and APC mutations in colorectal carcinoma. Gut. 2005;54(9):1283–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor immune microenvironment. Cell Host Microbe. 2014;14(2):207–15. https://doi.org/10.1016/j.chom.2013.07.007.
Article
CAS
Google Scholar
Purcell R V, Visnovska M, Biggs PJ, Schmeier S, Frizelle FA. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci Rep. 2017;7(1):1–12. https://doi.org/10.1038/s41598-017-11237-6.
Article
CAS
Google Scholar
Yeoh YK, Chen Z, Wong MCS, Hui M, Yu J, Ng SC, et al. Southern Chinese populations harbour non-nucleatum Fusobacteria possessing homologues of the colorectal cancer-associated FadA virulence factor. Gut. 2020;69(11):1998–2007.
Article
CAS
PubMed
Google Scholar
Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède JP. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci U S A. 2010;107(25):11537–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dejea CM, Fathi P, Craig JM, Boleiji A, Taddese R, Geis AL, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592–7. https://doi.org/10.1126/science.aah3648.
Article
CAS
PubMed
PubMed Central
Google Scholar
Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E, de Vallée A, et al. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol. 2014;20(21):6560–72.
Article
PubMed
PubMed Central
Google Scholar
Sedighi M, Zahedi Bialvaei A, Hamblin MR, Ohadi E, Asadi A, Halajzadeh M, et al. Therapeutic bacteria to combat cancer; current advances, challenges, and opportunities. Cancer Med. 2019;8(6):3167–81.
PubMed
PubMed Central
Google Scholar
Malorni W, Fiorentini C. Is the Rac GTPase-activating toxin CNF1 a smart hijacker of host cell fate? FASEB J. 2006;20(6):606–9.
Article
CAS
PubMed
Google Scholar
Wei Z, Cao S, Liu S, Yao Z, Sun T, Li Y, et al. Could gut microbiota serve as prognostic biomarker associated with colorectal cancer patients’ survival? A pilot study on relevant mechanism. Oncotarget. 2016;7(29):46158–72.
Article
PubMed
PubMed Central
Google Scholar
Franco AA, Cheng RK, Chung GT, Wu S, Oh HB, Sears CL. Molecular evolution of the pathogenicity island of enterotoxigenic Bacteroides fragilis strains. J Bacteriol. 1999;181(21):6623–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sears CL, Geis AL, Housseau F. Bacteroides fragilis subverts mucosal biology: From symbiont to colon carcinogenesis. J Clin Invest. 2014;124(10):4166–72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rawla P, Sunkara T, Gaduputi V. Epidemiology of Pancreatic Cancer: Global Trends, Etiology and Risk Factors. World J Oncol. 2019;10(1):10–27.
Article
PubMed
PubMed Central
Google Scholar
Olsen I, Yilmaz Ö. Possible role of Porphyromonas gingivalis in orodigestive cancers. J Oral Microbiol. 2019;11(1):1563410. https://doi.org/10.1080/20002297.2018.1563410.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hayashi C, Gudino CV, Gibson FC, Genco CA. Pathogen-induced inflammation at sites distant from oral infection: bacterial persistence and induction of cell-specific innate immune inflammatory pathways. Mol Oral Microbiol. 2010;25(5):305–16. https://doi.org/10.1111/j.2041-1014.2010.00582.x.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fine DH, Markowitz K, Fairlie K, Tischio-Bereski D, Ferrendiz J, Furgang D, et al. A consortium of Aggregatibacter actinomycetemcomitans, Streptococcus parasanguinis, and Filifactor alocis is present in sites prior to bone loss in a longitudinal study of localized aggressive periodontitis. J Clin Microbiol. 2013;51(9):2850–61.
Article
PubMed
PubMed Central
Google Scholar
Michaud DS, Joshipura K, Giovannucci E, Fuchs CS. A prospective study of periodontal disease and pancreatic cancer in US male health professionals. J Natl Cancer Inst. 2007;99(2):171–5.
Article
PubMed
Google Scholar
Michaud DS, Izard T. Microbiota, Oral Microbiome and Pancreatic Cancer. Cancer J. 2014;20(3):203–6. https://doi.org/10.1097/PPO.0000000000000046.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ahn J, Segers S, Hayes RB. Periodontal disease, Porphyromonas gingivalis serum antibody levels and orodigestive cancer mortality. Carcinogenesis. 2012;33(5):1055–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Goulas T, Mizgalska D, Garcia-Ferrer I, Kantyka T, Guevara T, Szmigielski B, et al. Structure and mechanism of a bacterial host-protein citrullinating virulence factor. Porphyromonas gingivalis peptidylarginine deiminase Sci Rep. 2015;5(June):1–17. https://doi.org/10.1038/srep11969.
Article
Google Scholar
Gabarrini G, De Smit M, Westra J, Brouwer E, Vissink A, Zhou K, et al. The peptidylarginine deiminase gene is a conserved feature of Porphyromonas gingivalis. Sci Rep. 2015;5:1–8. https://doi.org/10.1038/srep13936.
Article
CAS
Google Scholar
Gabarrini G, Grasso S, van Winkelhoff AJ, van Dijl JM. Gingimaps: Protein Localization in the Oral Pathogen Porphyromonas gingivalis. Microbiol Mol Biol Rev. 2020;84(1):1–26.
Article
Google Scholar
Baugh EH, Ke H, Levine AJ, Bonneau RA, Chan CS. Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 2018;25(1):154–60. https://doi.org/10.1038/cdd.2017.180.
Article
CAS
PubMed
Google Scholar
Barton CM, Staddon SL, Hughes CM, O’Sullivan C, Lemoine NR, Hall PA, et al. Abnormalities of the p53 tumour suppressor gene in human pancreatic cancer. Br J Cancer. 1991;64(6):1076–81.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu L, Wang K, Zhu ZM, Shao JH. Associations between P53 Arg72Pro and development of digestive tract cancers: A meta-analysis. Arch Med Res. 2011;42(1):60–9. https://doi.org/10.1016/j.arcmed.2011.01.008.
Article
CAS
PubMed
Google Scholar
Wu CYC, Carpenter ES, Takeuchi KK, Halbrook CJ, Peverley LV, Bien H, et al. PI3K regulation of RAC1 is required for KRAS-induced pancreatic tumorigenesis in mice. Gastroenterology. 2014;147(6):1405-1416.e7.
Article
CAS
PubMed
Google Scholar
Jiang SN, Phan TX, Nam TK, Nguyen VH, Kim HS, Bom HS, et al. Inhibition of tumor growth and metastasis by a combination of escherichia coli-mediated cytolytic therapy and radiotherapy. Mol Ther. 2010;18(3):635–42. https://doi.org/10.1038/mt.2009.295.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bachran C, Hasikova R, Leysath CE, Sastalla I, Zhang Y, Fattah RJ, et al. Cytolethal distending toxin B as a cell-killing component of tumor-targeted anthrax toxin fusion proteins. Cell Death Dis. 2014;5(1):e1003–9. https://doi.org/10.1038/cddis.2013.540.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hall EH, Gurel V, Dahlberg AE, McMichael J, Brautigan DL. Inhibition of human breast cancer Matrigel invasion by Streptolysin O activation of the EGF receptor ErbB1. Cell Signal. 2011;23(12):1972–7. https://doi.org/10.1016/j.cellsig.2011.07.007.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liang ZY, Kang X, Chen H, Wang M, Guan WX. Effect of Clostridium perfringens enterotoxin on gastric cancer cells SGC7901 which highly expressed claudin-4 protein. World J Gastrointest Oncol. 2017;9(4):153–9.
Article
PubMed
PubMed Central
Google Scholar
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, et al. Virulence and pathogenicity properties of Aggregatibacter actinomycetemcomitans. Pathogens. 2019;8(4):1–23.
Article
Google Scholar
Peng X, Zhang R, Duan G, Wang C, Sun N, Zhang L, et al. Production and delivery of Helicobacter pylori NapA in Lactococcus lactis and its protective efficacy and immune modulatory activity. Sci Rep. 2018;8(1):1–12. https://doi.org/10.1038/s41598-018-24879-x.
Article
CAS
Google Scholar
Michalska M, Wolf P. Pseudomonas Exotoxin A: Optimized by evolution for effective killing. Front Microbiol. 2015;6(SEP):1–7.
Google Scholar
Kawakami K, Kawakami M, Husain SR, Puri RK. Targeting interleukin-4 receptors for effective pancreatic cancer therapy. Cancer Res. 2002;62(13):3575–80.
CAS
PubMed
Google Scholar
Wolf P, Gierschner D, Bühler P, Wetterauer U, Elsässer-Beile U. A recombinant PSMA-specific single-chain immunotoxin has potent and selective toxicity against prostate cancer cells. Cancer Immunol Immunother. 2006;55(11):1367–73.
Article
CAS
PubMed
Google Scholar
Kumar S, Metz DC, Kaplan DE, Goldberg DS. The association of Helicobacter Pylori with Pancreatic Cancer. GastroHep. 2020;2:157–64. https://doi.org/10.1002/ygh2.398.
Article
PubMed
PubMed Central
Google Scholar
Hirabayashi M, Inoue M, Sawada N, Saito E, Abe SK, Hidaka A, et al. Helicobacter pylori infection, atrophic gastritis, and risk of pancreatic cancer: A population-based cohort study in a large Japanese population: the JPHC Study. Sci Rep. 2019;9(1):1–8. https://doi.org/10.1038/s41598-019-42365-w.
Article
CAS
Google Scholar
Nilsson HO, Wadström T, Stenram U, Ihse I. Helicobacter species ribosomal DNA in the pancreas, stomach and duodenum of pancreatic cancer patients. World J Gastroenterol. 2006;12(18):3038–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xiao M, Wang Y, Gao Y. Association between Helicobacter pylori Infection and Pancreatic Cancer Development: A Meta-Analysis. PLoS ONE. 2013;8(9):1–12.
Article
Google Scholar
Lee WC, Kopetz S, Wistuba II, Zhang J. Metastasis of cancer: When and how? Ann Oncol. 2017;28(9):2045–7. https://doi.org/10.1093/annonc/mdx327.
Article
PubMed
Google Scholar
Parhi L, Alon-Maimon T, Sol A, Nejman D, Shhadeh A, Fainsod-Levi T, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun. 2020;11(1):1–12. https://doi.org/10.1038/s41467-020-16967-2.
Article
CAS
Google Scholar
Kitadai Y. Cancer-Stromal cell interaction and tumor angiogenesis in gastric cancer. Cancer Microenviron. 2010;3(1):109–16.
Article
CAS
PubMed
Google Scholar
Idrissi Janati A, Karp I, Sabri H, Emami E. Is a fusobacterium nucleatum infection in the colon a risk factor for colorectal cancer?: A systematic review and meta-analysis protocol. Syst Rev. 2019;8(1):4–9.
Article
Google Scholar
Xavier JB, Young VB, Skufca J, Ginty F, Testerman T, Pearson AT, et al. The Cancer Microbiome: Distinguishing Direct and Indirect Effects Requires a Systemic View. Trends in Cancer. 2020;6(3):192–204.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chen Y, Chen Y, Zhang J, Cao P, Su W, Deng Y, et al. Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the upregulation of CARD3 expression. Theranostics. 2020;10(1):323–39.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guo S, Chen J, Chen F, Zeng Q, Liu WL, Zhang G. Exosomes derived from Fusobacterium nucleatum -infected colorectal cancer cells facilitate tumour metastasis by selectively carrying miR-1246/92b-3p/27a-3p and CXCL16. Gut. 2021;70(8):1507–19.
Article
CAS
Google Scholar
Salvucci M, Crawford N, Stott K, Bullman S, Longley DB, Prehn JH, et al. Patients with mesenchymal tumours and high Fusobacteriales prevalence have worse prognosis in colorectal cancer (CRC). 2021;2(3):1–13. https://doi.org/10.1101/2021.05.17.444326.
Article
Google Scholar
Stachowiak R, Lyzniak M, Budziszewska BK, Roeske K, Bielecki J, Hoser G, et al. Cytotoxicity of bacterial metabolic products, including listeriolysin O, on leukocyte targets. J Biomed Biotechnol. 2012. https://doi.org/10.1155/2012/954375.
Article
PubMed
PubMed Central
Google Scholar
He Z, Gharaibeh RZ, Newsome RC, Pope JL, Dougherty MW, Tomkovich S, et al. Campylobacter jejuni promotes colorectal tumorigenesis through the action of cytolethal distending toxin. Gut. 2019;68(2):289–300.
Article
CAS
PubMed
Google Scholar
Wai SN, Lindmark B, Söderblom T, Takade A, Westermark M, Oscarsson J, et al. Vesicle-mediated export and assembly of pore-forming oligomers of the enterobacterial ClyA cytotoxin. Cell. 2003;115(1):25–35.
Article
CAS
PubMed
Google Scholar
Sawant SS, Patil SM, Gupta V, Kunda NK, Sciences H. Microbes as Medicines : Harnessing the power of bacteria in advancing cancer treatment. Int J Mo Sci. 2020;21:7575. https://doi.org/10.3390/ijms21207575.
Article
CAS
Google Scholar
Bezine E, Vignard J, Mirey G. The Cytolethal Distending Toxin Effects on Mammalian Cells: A DNA Damage Perspective. Cells. 2014;3(2):592–615.
Article
PubMed
PubMed Central
Google Scholar
Haghjoo E, Galán JE. Salmonella typhi encodes a functional cytolethal distending toxin that is delivered into host cells by a bacterial-internalization pathway. Proc Natl Acad Sci U S A. 2004;101(13):4614–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kimoto H, Fujii Y, Yokota Y, Taketo A. Molecular characterization of NADase-streptolysin O operon of hemolytic streptococci. Biochim Biophys Acta - Gene Struct Expr. 2005;1681(2–3):134–49.
Article
CAS
Google Scholar
Kittichotirat W, Bumgarner RE, Asikainen S, Chen C. Identification of the pangenome and its components in 14 distinct aggregatibacter actinomycetemcomitans strains by comparative genomic analysis. PLoS One. 2011;6(7):e22420.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, et al. Expert consensus document: The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506–14.
Article
PubMed
Google Scholar
Parisa A, Roya G, Mahdi R, Shabnam R, Maryam E, Malihe T. Anti-cancer effects of Bifidobacterium species in colon cancer cells and a mouse model of carcinogenesis. PLoS One. 2020;15(5):1–18. https://doi.org/10.1371/journal.pone.0232930.
Article
CAS
Google Scholar
Wang Y, Jiang Y, Deng Y, Yi C, Wang Y, Ding M, et al. Probiotic Supplements: Hope or Hype? Front Microbiol. 2020;11(February):1–9.
Google Scholar
Chuah LO, Foo HL, Loh TC, Mohammed Alitheen NB, Yeap SK, Abdul Mutalib NE, et al. Postbiotic metabolites produced by Lactobacillus plantarum strains exert selective cytotoxicity effects on cancer cells. BMC Complement Altern Med. 2019;19(1):1–12.
Article
CAS
Google Scholar
Park J, Kwon M, Lee J, Park S, Seo J, Roh S. Anti-Cancer Effects of Lactobacillus plantarum L-14 Cell-Free Extract on Human Melanoma A375 Cells. Molecules. 2020;25(17):3895:1–14. https://doi.org/10.3390/molecules25173895.
Faghfoori Z, Faghfoori MH, Saber A, Izadi A, Yari KA. Anticancer effects of bifidobacteria on colon cancer cell lines. Cancer Cell Int. 2021;21(1):1–12. https://doi.org/10.1186/s12935-021-01971-3.
Article
CAS
Google Scholar
Wei H, Chen L, Lian G, Yang J, Li F, Zou Y, et al. Antitumor mechanisms of bifidobacteria (Review). Oncol Lett. 2018;16(1):3–8.
PubMed
PubMed Central
Google Scholar
Yang X, Da M, Zhang W, Qi Q, Zhang C, Han S. Role of Lactobacillus in cervical cancer. Cancer Manag Res. 2018;10:1219. https://doi.org/10.2147/CMAR.S165228.
Article
CAS
PubMed
PubMed Central
Google Scholar
Le Noci V, Guglielmetti S, Arioli S, Camisaschi C, Bianchi F, Sommariva M, et al. Modulation of Pulmonary Microbiota by Antibiotic or Probiotic Aerosol Therapy: A Strategy to Promote Immunosurveillance against Lung Metastases. Cell Rep. 2018;24(13):3528–38. https://doi.org/10.1016/j.celrep.2018.08.090.
Article
CAS
PubMed
Google Scholar
Nair N, Kasai T, Seno M. Bacteria: Prospective savior in battle against cancer. Anticancer Res. 2014;34(11):6289–96.
CAS
PubMed
Google Scholar
Brouchkov A, Wang Y, Guo W, Wu XL, Zhang Y, Mannion C, et al. Oncolytic bacteria and their potential role in bacterium-mediated tumour therapy: A conceptual analysis. J Cancer. 2019;10(19):4442–54.
Article
PubMed
PubMed Central
Google Scholar
Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904 (ss Oncogene 27 45 5904 12).
Article
CAS
PubMed
PubMed Central
Google Scholar
Loeffler M, Le’Negrate G, Krajewska M, Reed JC. Attenuated Salmonella engineered to produce human cytokine LIGHT inhibit tumor growth. Proc Natl Acad Sci U S A. 2007;104(31):12879–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kim SH, Castro F, Paterson Y, Gravekamp C. High efficacy of a Listeria-based vaccine against metastatic breast cancer reveals a dual mode of action. Cancer Res. 2015;69(14):5860–6. https://doi.org/10.1158/0008-5472.CAN-08-4855.
Article
CAS
Google Scholar
Roberts NJ, Zhang L, Janku F, Collins A, Bain R-J, Staedtke V, et al. Intratumoral injection of Clostridium noyvi-NT spores induces antitumor responses. SciTranslMed. 2014;6(249):249ra111. https://doi.org/10.1126/scitranslmed.3008982.
Article
CAS
Google Scholar
Samadi M, Majidzadeh-a K, Salehi M, Jalili N, Noorinejad Z, Mosayebzadeh M, et al. Engineered hypoxia-responding Escherichia coli carrying cardiac peptide genes , suppresses tumor growth , angiogenesis and metastasis in vivo. J Biol Eng. 2021;2:1–15.
Google Scholar
Duong MTQ, Qin Y, You SH, Min JJ. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp Mol Med. 2019;51(12):1–15. https://doi.org/10.1038/s12276-019-0297-0.
Article
CAS
PubMed
Google Scholar
Pawelek JM, Low KB, Bermudes D. Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res. 1997;57(20):4537–44.
CAS
PubMed
Google Scholar
Clairmont C, Lee KC, Pike J, Ittensohn M, Low KB, Pawelek J, et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of Salmonella typhimurium. J Infect Dis. 2000;181(6):1996–2002.
Article
CAS
PubMed
Google Scholar
Toso JF, Gill VJ, Hwu P, Marincola FM, Restifo NP, Schwartzentruber DJ, et al. Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. J Clin Oncol. 2002;20(1):142–52.
Article
PubMed
Google Scholar
Li M, Lu M, Lai Y, Zhang X, Li Y, Mao P, et al. Inhibition of acute leukemia with attenuated Salmonella typhimurium strain VNP20009. Biomed Pharmacother. 2020;129(June): 110425. https://doi.org/10.1016/j.biopha.2020.110425.
Article
CAS
PubMed
Google Scholar
Zhang Y, Zhang N, Zhao M, Hoffman RM. Comparison of the selective targeting efficacy of Salmonella typhimurium A1-R and VNP20009 on the lewis lung carcinoma in nude mice. Oncotarget. 2015;6(16):14625–31.
Article
PubMed
PubMed Central
Google Scholar
Hiroshima Y, Zhao M, Zhang Y, Maawy A, Hassanein MK, Uehara F, et al. Comparison of efficacy of Salmonella typhimurium A1-R and chemotherapy on stem-like and non-stem human pancreatic cancer cells. Cell Cycle. 2013;12(17):2774–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hiroshima Y, Zhao M, Zhang Y, Zhang N, Maawy A, Murakami T, et al. Tumor-targeting salmonella typhimurium A1-R arrests a chemo-resistant patient soft-tissue sarcoma in nude mice. PLoS ONE. 2015;10(8):1–9.
Article
Google Scholar
Kawaguchi K, Igarashi K, Murakami T, Kiyuna T, Zhao M, Zhang Y, et al. Salmonella typhimurium A1-R targeting of a chemotherapy-resistant BRAF-V600E melanoma in a patient-derived orthotopic xenograft (PDOX) model is enhanced in combination with either vemurafenib or temozolomide. Cell Cycle. 2017;16(13):1288–94. https://doi.org/10.1080/15384101.2017.1314420.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao S, Jung JH, Lin SM, Jang AY, Zhi Y, Bum Ahn K, et al. Development of Oxytolerant Salmonella typhimurium Using Radiation Mutation Technology (RMT) for Cancer Therapy. Sci Rep. 2020;10(1):1–12.
Google Scholar
Janku F, Zhang HH, Pezeshki A, Goel S, Murthy R, Wang- Gillam A, et al. Intratumoral injection of clostridium novyi-NT spores in patients with treatment-refractory advanced solid tumors. Clin Cancer Res. 2021;27(1):96–106. https://doi.org/10.1158/10780432.CCR-20-2065.
Article
CAS
PubMed
Google Scholar
Mazor R, Pastan I. Immunogenicity of Immunotoxins Containing Pseudomonas Exotoxin A: Causes Consequences and Mitigation. Front Immunol. 2020;11:1261.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dieffenbach M, Pastan I. Mechanisms of resistance to immunotoxins containing pseudomonas exotoxin a in cancer therapy. Biomolecules. 2020;10(7):1–13.
Article
Google Scholar
Alewine C, Ahmad M, Peer CJ, Hu ZI, Lee M-J, Yuno A. Phase I/II Study of the Mesothelin-targeted Immunotoxin LMB-100 with Nab-Paclitaxel for Patients with Advanced Pancreatic Adenocarcinoma. Clin Cancer Res. 2020;26(4):828–36. https://doi.org/10.1158/1078-0432.CCR-19-2586.
Article
CAS
PubMed
Google Scholar
Weerakkody LR, Witharana C. The role of bacterial toxins and spores in cancer therapy. Life Sci. 2019;235(March): 116839. https://doi.org/10.1016/j.lfs.2019.116839.
Article
CAS
PubMed
Google Scholar
Scott AJ, Alexander JL, Merrifield CA, Cunningham D, Jobin C, Brown R, et al. International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis. Gut. 2019;68(9):1624–32.
Article
CAS
PubMed
Google Scholar