Fleming D, Chahin L, Rumbaugh K. Glycoside hydrolases degrade polymicrobial bacterial biofilms in wounds. Antimicrob Agents Chemother. 2017;61(2).
Muhsin J, Ufaq T, Tahir H, Saadia A. Bacterial biofilm: its composition, formation and role in human infections. J Microbiol Biotechnol. 2015;4:1–14.
Google Scholar
Ghannoum M, O’Toole G. Microbial Biofilms. Washington DC: American Society for Microbiology. 2004.
Google Scholar
Kostakioti M, Hadjifrangiskou M, Hultgren SJ. Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harb Perspect Med. 2013;3(4):a010306.
PubMed
PubMed Central
Google Scholar
Leid JG, Willson CJ, Shirtliff ME, Hassett DJ, Parsek MR, Jeffers AK. The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-γ-mediated macrophage killing. J Immunol. 2005;175(11):7512–8.
CAS
PubMed
Google Scholar
Taylor PK, Yeung AT, Hancock RE. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol. 2014;191:121–30.
CAS
PubMed
Google Scholar
Singh S, Singh SK, Chowdhury I, Singh R. Understanding the mechanism of bacterial biofilms resistance to antimicrobial agents. Open Microbiol J. 2017;11:53.
CAS
PubMed
PubMed Central
Google Scholar
Jamal M, Ahmad W, Andleeb S, Jalil F, Imran M, Nawaz MA, Hussaina T, Alid M, Rafiqa M, Atif Kamil M. Bacterial biofilm and associated infections. J Chinese Med Assoc. 2018;81(1):7–11.
Google Scholar
Kamali E, Jamali A, Ardebili A, Ezadi F, Mohebbi A. Evaluation of antimicrobial resistance, biofilm forming potential, and the presence of biofilm-related genes among clinical isolates of Pseudomonas aeruginosa. BMC Res Notes. 2020;13(1):27.
CAS
PubMed
PubMed Central
Google Scholar
Tolker-Nielsen T. Pseudomonas aeruginosa biofilm infections: from molecular biofilm biology to new treatment possibilities. APMIS Suppl. 2014;122:1–51.
CAS
Google Scholar
Pournajaf A, Razavi S, Irajian G, Ardebili A, Erfani Y, Solgi S, Yaghoubi S, Rasaeian A, Yahyapour Y, Kafshgari R, et al. Integron types, antimicrobial resistance genes, virulence gene profile, alginate production and biofilm formation in Iranian cystic fibrosis Pseudomonas aeruginosa isolates. Infez Med. 2018;26(3):226–36.
PubMed
Google Scholar
Gellatly SL, Hancock RE. Pseudomonas aeruginosa: new insights into pathogenesis and host defenses. Pathog Dis. 2013;67(3):159–73.
CAS
PubMed
Google Scholar
Church D, Elsayed S, Reid O, Winston B, Lindsay R. Burn wound infections. Clin Microbiol Rev. 2006;19(2):403–34.
PubMed
PubMed Central
Google Scholar
Turner KH, Everett J, Trivedi U, Rumbaugh KP, Whiteley M. Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genet. 2014;10(7):e1004518.
PubMed
PubMed Central
Google Scholar
Metcalf DG, Bowler PG. Biofilm delays wound healing: a review of the evidence. Burn Trauma. 2013;1(1):2321-3868.113329.
Google Scholar
Nidadavolu P, Amor W, Tran PL, Dertien J, Colmer-Hamood JA, Hamood AN. Garlic ointment inhibits biofilm formation by bacterial pathogens from burn wounds. J Med Microbiol. 2012;61(5):662–71.
PubMed
Google Scholar
Nagraj AK, Gokhale D. Bacterial biofilm degradation using extracellular enzymes produced by Penicillium janthinellum EU2D-21 under submerged fermentation. Adv Microbiol. 2018;8(9):687–98.
CAS
Google Scholar
Naumoff D. Hierarchical classification of glycoside hydrolases. Biochem (Mosc). 2011;76(6):622–35.
CAS
Google Scholar
Karatan E, Watnick P. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev. 2009;73(2):310–47.
CAS
PubMed
PubMed Central
Google Scholar
Flemming H-C, Wingender J. The biofilm matrix. Nat Rev Microbiol. 2010;8(9):623–33.
CAS
PubMed
Google Scholar
Rajasekharan SK, Ramesh S. Cellulase inhibits Burkholderia cepacia biofilms on diverse prosthetic materials. Pol J Microbiol. 2013;62(3):327–00.
CAS
PubMed
Google Scholar
Loiselle M, Anderson KW. The use of cellulase in inhibiting biofilm formation from organisms commonly found on medical implants. Biofouling. 2003;19(2):77–85.
CAS
PubMed
Google Scholar
Clinical and laboratory standards institute. Performance standards for antimicrobial susceptibility testing, Wayne P., 28th ed; 2019,M100.
Overhage J, Campisano A, Bains M, Torfs EC, Rehm BH, Hancock RE. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun. 2008;76(9):4176–82.
CAS
PubMed
PubMed Central
Google Scholar
Naparstek L, Carmeli Y, Navon-Venezia S, Banin E. Biofilm formation and susceptibility to gentamicin and colistin of extremely drug-resistant KPC-producing Klebsiella pneumoniae. J Antimicrob Chemother. 2014;69(4):1027–34.
CAS
PubMed
Google Scholar
Tetz GV, Artemenko NK, Tetz VV. Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother. 2009;53(3):1204–9.
CAS
PubMed
Google Scholar
Martins M, Henriques M, Lopez-Ribot JL, Oliveira R. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses. 2012;55(1):80–5.
CAS
PubMed
Google Scholar
Donlan RM, Costerton JW. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev. 2002;15(2):167–93.
CAS
PubMed
PubMed Central
Google Scholar
Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–22.
CAS
PubMed
Google Scholar
Gawande PV, Leung KP, Madhyastha S. Antibiofilm and antimicrobial efficacy of DispersinB®-KSL-W peptide-based wound gel against chronic wound infection associated bacteria. Curr Microbiol. 2014;68(5):635–41.
CAS
PubMed
Google Scholar
Püllen R, Popp R, Volkers P, Füsgen I. Prospective randomized double-blind study of the wound‐debriding effects of collagenase and fibrinolysin/deoxyribonuclease in pressure ulcers. Age Ageing. 2002;31(2):126–30.
PubMed
Google Scholar
Nemoto K, Hirota K, Murakami K, Taniguti K, Murata H, Viducic D, Miyake Y. Effect of Varidase (streptodornase) on biofilm formed by Pseudomonas aeruginosa. Chemotherapy. 2003;49(3):121–5.
CAS
PubMed
Google Scholar
Ramundo J, Gray M. Enzymatic wound debridement. J Wound Ostomy Continence Nurs. 2008;35(3):273–80.
PubMed
Google Scholar
Trizna E, Bogachev MI, Kayumov A. Degrading of the Pseudomonas aeruginosa biofilm by extracellular levanase SacC from Bacillus subtilis. BioNanoScience. 2019;9(1):48–52.
Google Scholar
Baker P, Hill PJ, Snarr BD, Alnabelseya N, Pestrak MJ, Lee MJ, Jennings LK, Tam J, Melnyk RA, Parsek MR, et al. Exopolysaccharide biosynthetic Melnyk glycoside hydrolases can be utilized to disrupt and prevent Pseudomonas aeruginosa biofilms. Sci Adv. 2016;2(5):e1501632.
PubMed
PubMed Central
Google Scholar
Banar M, Emaneini M, Satarzadeh M, Abdellahi N, Beigverdi R, van Leeuwen WB, Jabalameli F. Evaluation of mannosidase and trypsin enzymes effects on biofilm production of Pseudomonas aeruginosa isolated from burn wound infections. PloS one. 2016;11(10):e0164622.
PubMed
PubMed Central
Google Scholar
Daboor SM, Raudonis R, Cohen A, Rohde JR, Cheng Z. Marine bacteria, a source for alginolytic enzyme to disrupt Pseudomonas aeruginosa biofilms. Marine Drugs. 2019;17(5):307.
CAS
PubMed Central
Google Scholar
Banar M, Emaneini M, Beigverdi R, Pirlar RF, Farahani NN, van Leeuwen WB, van Leeuwen WB, Jabalameli F. The efficacy of lyticase and β-glucosidase enzymes on biofilm degradation of Pseudomonas aeruginosa strains with different gene profiles. BMC Microbiol. 2019;19(1):291.
CAS
PubMed
PubMed Central
Google Scholar
Alhede M, Bjarnsholt T, Givskov M, Alhede M. Pseudomonas aeruginosa biofilms: mechanisms of immune evasion. In: Adv Appl Microbiol. Elsevier; 2014. p. 1-40.
Fleming D, Rumbaugh K. The consequences of biofilm dispersal on the host. Sci. Rep. 2018;8(1):1–7.
Google Scholar
Fleming D, Redman W, Welch GS, Mdluli NV, Rouchon CN, Frank KL, Rumbaugh KP. Utilizing glycoside hydrolases to improve the quantitation and visualization of biofilm bacteria. Biofilm. 2020;2:100037.
PubMed
PubMed Central
Google Scholar
Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS Suppl. 2013;121:1–58.
Google Scholar
Dosler S, Karaaslan E. Inhibition and destruction of Pseudomonas aeruginosa biofilms by antibiotics and antimicrobial peptides. Peptides. 2014;62:32–7.
CAS
PubMed
Google Scholar
Toté K, Berghe DV, Deschacht M, De Wit K, Maes L, Cos P. Inhibitory efficacy of various antibiotics on matrix and viable mass of Staphylococcus aureus and Pseudomonas aeruginosa biofilms. Int J Antimicrob Agents. 2009;33(6):525–31.
PubMed
Google Scholar
Hengzhuang W, Ciofu O, Yang L, Wu H, Song Z, Oliver A, Høiby N. High β-lactamase levels change the pharmacodynamics of β-lactam antibiotics in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother. 2013;57(1):196–204.
PubMed
PubMed Central
Google Scholar
Cordeiro AL, Hippius C, Werner C. Immobilized enzymes affect biofilm formation. Biotechnol Lett. 2011;33(9):1897–904.
CAS
PubMed
Google Scholar
Otani S, Hiramatsu K, Hashinaga K, Komiya K, Umeki K, Kishi K, Kadota JI. Sub-minimum inhibitory concentrations of ceftazidime inhibit Pseudomonas aeruginosa biofilm formation. J Infect Chemother. 2018;24(6):428–33.
CAS
PubMed
Google Scholar
Pestrak MJ, Baker P, Dellos-Nolan S, Hill PJ, da Silva DP, Silver H, Lacdao I, Raju D, Parsek MR, Wozniak DJ, et al. treatment with the Pseudomonas aeruginosa glycoside hydrolase PslG combats wound infection by improving antibiotic efficacy and host innate immune activity. Antimicrob Agents Chemother. 2019;63(6).
Fanaei Pirlar R, Emaneini M, Beigverdi R, Banar M, B. van Leeuwen W, Jabalameli F. Combinatorial effects of antibiotics and enzymes against dual-species Staphylococcus aureus and Pseudomonas aeruginosa biofilms in the wound-like medium. Plos one. 2020;15(6):e0235093.
CAS
PubMed
PubMed Central
Google Scholar