Skip to main content

Correction to: Human microbiota modulation via QseC sensor kinase mediated in the Escherichia coli O104:H4 outbreak strain infection in microbiome model

The Original Article was published on 02 June 2021

Correction to: BMC Microbiology (2021) 21:163

https://doi.org/10.1186/s12866-021-02220-3

Following the publication of the original article [1], we were notified that the captions for Figs. 2, 3 and 5 needed adjustments.

Original captions:

  • Fig. 2: “Microbiota predominance modulated via QseC during C227–11 infection in the SHIME® model. Relative microbiota abundance analysis via qRT-PCR of 16 s rRNA of phyla and genera. Microbiota composition from days 0 to 3 p.i with strain C227–11 infection, respectively, phyla and genera (a and b), and with strain C227–11::qseC infection, respectively, phyla and genera (c and d). ELISA Immunoassay capture to measure the Stx levels from the output collected during the SHIME® infection, day 1, ** p = 0.002 and 3 p.i., ** p = 0.009 (e). The statistical significance analyzes were performed on GraphPad Prism 7 via t-test”

  • Fig. 3: “Direct acetate, propionate and butyrate production analysis (mmol/L) from day 0 to day 3.p.i. via gas chromatography. SCFA composition from C227–11 infection period (a) (*** p = 0.0003) and C227–11::qseC (b). Analyzes were performed individually for each SCFA compared to day 0. The statistical significance analyzes were performed on GraphPad Prism 7 via one-way ANOVA and Tukey post hoc test (*p = 0.0371, *p = 0.0309, *** p = 0.0001)”

  • Fig. 5: “Microbiota predominance during C57BL/6 mice infection, C227–11and C227–11::qseC strains (a). Expression levels of qseC during early and later infection (day 1-3p.i.) of C227–11, 042 and DH5α strains, p-values are respectively p =0.006 (**), p = 0.001 (**) and p = 0.004 (**) (b). Relative expression levels were measured in vitro of stx2a gene from the C227–11, C227–11::qseC, and C227–11qseC+ (pBAD33 qseC), p = 0.01 (**), p = 0.001 (***) (c)”

Corrected captions:

  • Fig. 2: “Microbiota predominance modulated via QseC during C227–11 infection in the SHIME® model. Relative microbiota abundance analysis via qRT-PCR of 16 s rRNA of phyla and genera. Microbiota composition from days 0 to 3 p.i with strain C227–11 infection, respectively, phyla and genera (a and b), and with strain C227– 11::qseC infection, respectively, phyla and genera (c and d). ELISA Immunoassay capture to measure the Stx levels from the output collected during the SHIME® infection, day 1, ** p = 0.002 and 3 p.i., ** p = 0.009 (e). The statistical significance analyzes were performed on GraphPad Prism 7 via t-test”

  • Fig. 3: “Direct acetate, propionate and butyrate production analysis (mmol/L) from day 0 to day 3.p.i. via gas chromatography. SCFA composition from C227–11 infection period (a) (*** p = 0.0003) and C227–11::qseC (b). Analyzes were performed individually for each SCFA compared to day 0. The statistical significance analyzes were performed on GraphPad Prism 7 via one-way ANOVA and Tukey post hoc test (*p = 0.0371, *p = 0.0309, *** p = 0.0001)”

  • “Fig. 5: Microbiota predominance during C57BL/6 mice infection, C227–11and C227–11::qseC strains (a). Expression levels of qseC during early and later infection (day 1-3p.i.) of C227–11, 042 and DH5α strains, p-values are respectively p =0.006 (**), p = 0.001 (**) and p = 0.004 (**) (b). Relative expression levels were measured in vitro of stx2a gene from the C227–11, C227–11::qseC, and C227–11qseC+ (pBAD33 qseC), p = 0.01 (**), p = 0.001 (***) (c)”

The original article has been corrected.

Reference

  1. Ribeiro M, et al. Human microbiota modulation via QseC sensor kinase mediated in the Escherichia coli O104:H4 outbreak strain infection in microbiome model (2021) 21:163. 2021;21(1):163. https://doi.org/10.1186/s12866-021-02220-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristiano Gallina Moreira.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, T.R.M., Salgaço, M.K., Adorno, M.A.T. et al. Correction to: Human microbiota modulation via QseC sensor kinase mediated in the Escherichia coli O104:H4 outbreak strain infection in microbiome model. BMC Microbiol 21, 233 (2021). https://doi.org/10.1186/s12866-021-02266-3

Download citation

  • Published:

  • DOI: https://doi.org/10.1186/s12866-021-02266-3