Marcelino VR, Verbruggen H. Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Sci Rep. 2016;6(1):9. https://doi.org/10.1038/srep31508.
Article
CAS
Google Scholar
Hernandez-Agreda A, Gates RD, Ainsworth TD. Defining the Core microbiome in Corals' microbial soup. Trends Microbiol. 2017;25(2):125–40. https://doi.org/10.1016/j.tim.2016.11.003.
Article
CAS
PubMed
Google Scholar
Mass T, Putnam HM, Drake JL, Zelzion E, Gates RD, Bhattacharya D, et al. Temporal and spatial expression patterns of biomineralization proteins during early development in the stony coral Pocillopora damicornis. Proc Royal Soc B-Biol Sci. 2016;283(1829); doi: https://doi.org/10.1098/rspb.2016.0322.
Costanza R, De Groot R, Sutton P, Van der Ploeg S, Anderson SJ, Kubiszewski I, et al. Changes in the global value of ecosystem services. Global Environ Change. 2014;26:7–158. https://doi.org/10.1016/j.gloenvcha.2014.04.002.
Article
Google Scholar
Woodhead AJ, Hicks CC, Norström AV, Williams GJ, Graham NAJ. Coral reef ecosystem services in the Anthropocene. Funct Ecol. 2019;33(6); doi: https://doi.org/10.1111/1365-2435.13331.
Smale DA, Wernberg T, Oliver ECJ, Thomsen M, Harvey BP, Straub SC, et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nature Climate Change. 2019;9(4); doi: https://doi.org/10.1038/s41558-019-0412-1.
Nordborg FM, Jones RJ, Oelgemöller M, Negri AP. The effects of ultraviolet radiation and climate on oil toxicity to coral reef organisms - a review. Sci Total Environ. 2020;720:15. https://doi.org/10.1016/j.scitotenv.2020.137486.
Article
CAS
Google Scholar
Rosenberg E, Koren O, Reshef L, Efrony R, Zilber-Rosenberg I. The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol. 2007;5(5):8–362. https://doi.org/10.1038/nrmicro1635.
Article
CAS
Google Scholar
Hughes TP, Kerry JT, Álvarez-Noriega M, Álvarez-Romero JG, Anderson KD, Baird AH, et al. Global warming and recurrent mass bleaching of corals. Nature. 2017;543(7645):13–377. https://doi.org/10.1038/nature21707.
Skirving WJ, Heron SF, Marsh BL, Liu G, Cour JLDL, Geiger EF, et al. The relentless march of mass coral bleaching: a global perspective of changing heat stress. Coral Reefs. 2019;38(4):11–557. https://doi.org/10.1007/s00338-019-01799-4.
Article
Google Scholar
Harrison HB, Álvarez-Noriega M, Baird AH, Heron SF, MacDonald C, Hughes TP. Back-to-back coral bleaching events on isolated atolls in the Coral Sea. Coral Reefs. 2018;38(4):713–9. https://doi.org/10.1007/s00338-018-01749-6.
Article
Google Scholar
Lough JM, Anderson KD, Hughes TP. Increasing thermal stress for tropical coral reefs: 1871-2017. Sci Rep. 2018;8(1):6079. https://doi.org/10.1038/s41598-018-24530-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Duarte GAS, Villela HDM, Deocleciano M, Silva D, Barno A, Cardoso PM, et al. Heat waves are a major threat to turbid coral reefs in Brazil. Front Mar Sci. 2020;7. https://doi.org/10.3389/fmars.2020.00179.
Hughes TP, Anderson KD, Connolly SR, Heron SF, Kerry JT, Lough JM, et al. Spatial and temporal patterns ofmass bleaching of corals in the Anthropocene. Science. 2018;359(6371):4–83. https://doi.org/10.1126/science.aan8048.
Lapointe BE, Brewton RA, Herren LW, Porter JW, Hu C. Nitrogen enrichment, altered stoichiometry, and coral reef decline at Looe key, Florida keys, USA: a 3-decade study. Mar Biol. 2019;166(8):31. https://doi.org/10.1007/s00227-019-3538-9.
Article
CAS
Google Scholar
Holl KD, Aide TM. When and where to actively restore ecosystems? For Ecol Manag. 2011;261(10):6–1563. https://doi.org/10.1016/j.foreco.2010.07.004.
Article
Google Scholar
Rinkevich B. Management of coral reefs: we have gone wrong when neglecting active reef restoration. Mar Pollut Bull. 2008;56(11):4–1824. https://doi.org/10.1016/j.marpolbul.2008.08.014.
Article
CAS
Google Scholar
Rinkevich B. The active reef restoration toolbox is a vehicle for coral resilience and adaptation in a changing world. J Marine Sci Eng. 2019;7(7):18. https://doi.org/10.3390/jmse7070201.
Article
Google Scholar
Randall CJ, Negri AP, Quigley KM, Foster T, Ricardo GF, Webster NS, et al. Sexual production of corals for reef restoration in the Anthropocene. Mar Ecol Prog Ser. 2020;635:30–232. https://doi.org/10.3354/meps13206.
Craggs J, Guest JR, Davis M, Simmons J, Dashti E, Sweet M. Inducing broadcast coral spawning ex situ: closed system mesocosm design and husbandry protocol. Ecol Evol. 2017;7(24):11066–78. https://doi.org/10.1002/ece3.3538.
Article
PubMed
PubMed Central
Google Scholar
Craggs J, Guest J, Bulling M, Sweet M. Ex situ co culturing of the sea urchin, Mespilia globulus and the coral Acropora millepora enhances early post-settlement survivorship. Sci Rep. 2019;9(1):12984. https://doi.org/10.1038/s41598-019-49447-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Foo JL, Ling H, Lee YS, Chang MW. Microbiome engineering: current applications and its future. Biotechnol J. 2017;12(3):9. https://doi.org/10.1002/biot.201600099.
Article
CAS
Google Scholar
Kassam Z, Lee CH, Yuan Y, Hunt RH. Fecal microbiota transplantation for Clostridium difficile infection: systematic review and meta-analysis. Am J Gastroenterol. 2013;108(4):9–508. https://doi.org/10.1038/ajg.2013.59.
Article
Google Scholar
Ianiro G, Eusebi LH, Black CJ, Gasbarrini A, Cammarota G. Ford3 AC. Systematic review with meta-analysis: efficacy of faecal microbiota transplantation for the treatment of irritable bowel syndrome. Aliment Pharmacol Ther. 2019;50(3):240–8. https://doi.org/10.1111/apt.15330.
Article
PubMed
Google Scholar
Nguyen ATV, Nguyen DV, Tran MT, Nguyen LT, Nguyen AH, Phan T-N. Isolation and characterization of Bacillus subtilis CH16 strain from chicken gastrointestinal tracts for use as a feed supplement to promote weight gain in broilers. Lett Appl Microbiol. 2015;60(6):9–588. https://doi.org/10.1111/lam.12411.
Article
CAS
Google Scholar
Glick BR. Plant growth-promoting bacteria: mechanisms and applications. Scientifica. 2012;2012:16–5. https://doi.org/10.6064/2012/963401.
Article
Google Scholar
Zollaa G, Badri DV, Bakker MG, Manter DK, Vivanco JM. Soil microbiomes vary in their ability to confer drought tolerance to Arabidopsis. Appl Soil Ecol. 2013;68:9–9. https://doi.org/10.1016/j.apsoil.2013.03.007.
Article
Google Scholar
Gopal M, Gupta A, Thomas GV. Bespoke microbiome therapy to manage plant diseases. Front Microbiol. 2013;4:4. https://doi.org/10.3389/fmicb.2013.00355.
Article
Google Scholar
Krediet CJ, Ritchie KB, Paul VJ, Teplitski M. Coral-associated micro-organisms and their roles in promoting coral health and thwarting diseases. Proc Royal Scociety B-Biol Sci. 2013;280(1755):9. https://doi.org/10.1098/rspb.2012.2328.
Article
Google Scholar
Reshef L, Koren O, Zilber-Rosenberg I, Loya Y, Rosenberg E. The coral probiotic hypothesis. Environ Microbiol. 2006;8(12):6–2073. https://doi.org/10.1111/j.1462-2920.2006.01148.x.
Article
CAS
Google Scholar
Peixoto RS, Rosado AS, Rosado PM, Leite DCdA, Bourne DG. Beneficial Microorganisms for Corals (BMC): Proposed Mechanisms for Coral Health and Resilience. Front Microbiol. 2017;8:16; doi: https://doi.org/10.3389/fmicb.2017.00341.
Epstein HE, Smith HA, Torda G, Oppen MJv. Microbiome engineering: enhancing climate resilience in corals. Front Ecol Environ 2019;17(2):9; doi: https://doi.org/10.1002/fee.2001.
Peixoto RS, Sweet M, Bourne DG. Customized medicine for corals. Front Mar Sci. 2019;6. https://doi.org/10.3389/fmars.2019.00686.
Welsh RM, Rosales SM, Zaneveld JR, Payet JP, McMinds R, Hubbs SL, et al. Alien vs predator: bacterial challenge alters coral microbiomes unless controlled by Halobacteriovorax predators. PeerJ. 2017;5:22. https://doi.org/10.7717/peerj.3315.
Article
CAS
Google Scholar
Rosado PM, Leite DCA, Duarte GAS, Chaloub RM, Jospin G, Rocha UNd, et al. Marine probiotics: increasing coral resistance to bleaching through microbiome manipulation. ISME J 2019;13(4):16; doi: https://doi.org/10.1038/s41396-018-0323-6.
Villela HDM, Vilela CLS, Assis JM, Varona N, Burke C, Coil DA, et al. Prospecting microbial strains for bioremediation and probiotics development for Metaorganism research and preservation. J Vis Exp. 2019;152(152):12. https://doi.org/10.3791/60238.
Damjanovic K, Oppen MJv, Menéndez P, Blackall LL. Experimental Inoculation of Coral Recruits With Marine Bacteria Indicates Scope for Microbiome Manipulation in Acropora tenuis and Platygyra daedalea. Front Microbiol. 2019;10; doi: https://doi.org/10.3389/fmicb.2019.01702.
Fiore CL, Jarett JK, Olson ND, Lesser MP. Nitrogen fixation and nitrogen transformations in marine symbioses. Trends Microbiol. 2010;18(10):455–63. https://doi.org/10.1016/j.tim.2010.07.001.
Article
CAS
PubMed
Google Scholar
Kannapiran E, Ravindran J. Dynamics and diversity of phosphate mineralizing bacteria in the coral reefs of gulf of Mannar. J Basic Microbiol. 2012;52(1):91–8. https://doi.org/10.1002/jobm.201100095.
Article
CAS
PubMed
Google Scholar
Yoon S-H, Ha S-M, Kwon S, Lim J, Kim Y, Seo H, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67(5):5–1617. https://doi.org/10.1099/ijsem.0.001755.
Santos HFd, Duarte GAS, Rachid CTdC, Chaloub RM, Calderon EN, Marangoni LFdB, et al. Impact of oil spills on coral reefs can be reduced by bioremediation using probiotic microbiota. Scientific Reports. 2015;5:11; doi: https://doi.org/10.1038/srep18268.
Bourne DG, Munn CB. Diversity of bacteria associated with the coral Pocillopora damicornis from the great barrier reef. Environ Microbiol. 2005;7(8):13–1174. https://doi.org/10.1111/j.1462-2920.2005.00793.x.
Article
CAS
Google Scholar
Littman RA, Willis BL, Pfeffer C, Bourne DG. Diversities of coral-associated bacteria differ with location, but not species, for three acroporid corals on the great barrier reef. FEMS Microbiol Ecol. 2009;68(2):12–163. https://doi.org/10.1111/j.1574-6941.2009.00666.x.
Article
CAS
Google Scholar
Lee OO, Yang J, Bougouffa S, Wang Y, Batang Z, Tian R, et al. Spatial and species variations in bacterial communities associated with corals from the Red Sea as revealed by pyrosequencing. Appl Environ Microbiol. 2012;78(20):12–7184. https://doi.org/10.1128/AEM.01111-12.
Zhang Y-Y, Ling J, Yang Q-S, Wang Y-S, Sun C-C, Sun H-Y, et al. The diversity of coral associated bacteria and the environmental factors affect their community variation. Ecotoxicology. 2015;24(7–8):11–1477. https://doi.org/10.1007/s10646-015-1454-4.
Morgans CA, Hung JY, Bourne DG, Quigley KM. Symbiodiniaceae probiotics for use in bleaching recovery. Restor Ecol. 2020;28(2):7–288. https://doi.org/10.1111/rec.13069.
Article
Google Scholar
Lukwambe B, Nicholaus R, Zhang D, Yang W, Zhu J, Zheng Z. Successional changes of microalgae community in response to commercial probiotics in the intensive shrimp (Litopenaeus vannamei Boone) culture systems. Aquaculture. 2019;511:734257. https://doi.org/10.1016/j.aquaculture.2019.734257.
Article
CAS
Google Scholar
Wang R, Guo Z, Tang Y, Kuang J, Duan Y, Lin H, et al. Effects on development and microbial community of shrimp Litopenaeus vannamei larvae with probiotics treatment. AMB Express. 2020;10(1):109. https://doi.org/10.1186/s13568-020-01041-3.
Ninawe AS, Selvin J. Probiotics in shrimp aquaculture: avenues and challenges. Crit Rev Microbiol. 2009;35(1):43–66. https://doi.org/10.1080/10408410802667202.
Article
CAS
PubMed
Google Scholar
Zheng Q, Chen C, Yan X-J, Wang Y-N, Zeng Y-H, Hao L-K, et al. Mameliella alba gen. nov., sp. nov., a marine bacterium of the Roseobacter clade in the order Rhodobacterales. Int J Syst Evol Microbiol. 2010;60:5. https://doi.org/10.1099/ijs.0.011437-0.
Article
Google Scholar
Danish-Daniel M, Ming GH, Noor MEM, Sung Y, Usup G. Draft genome sequence of Mameliella alba strain UMTAT08 isolated from clonal culture of toxic dinoflagellate Alexandrium tamiyavanichii. Genomics Data. 2016;10:3–14. https://doi.org/10.1016/j.gdata.2016.08.015.
Article
Google Scholar
Duan Y, Wang Y, Liu Q, Dong H, Li H, Xiong D, et al. Changes in the intestine microbial, digestion and immunity of Litopenaeus vannamei in response to dietary resistant starch. Sci Rep. 2019;9(1):10. https://doi.org/10.1038/s41598-019-42939-8.
Varasteh T, Moreira APB, Lima AWS, Leomil L, Otsuki K, Tschoeke D, et al. Genomic repertoire of Mameliella alba Ep20 associated with Symbiodinium from the endemic coral Mussismilia braziliensis. Symbiosis. 2019;80(1):8–60. https://doi.org/10.1007/s13199-019-00655-x.
Article
CAS
Google Scholar
Duan Y, Wang Y, Ding X, Xiong D, Zhang J. Response of intestine microbiota, digestion, and immunity in Pacific white shrimp Litopenaeus vannamei to dietary succinate. Aquaculture. 2020;517:734762. https://doi.org/10.1016/j.aquaculture.2019.734762.
Article
CAS
Google Scholar
Fan L, Liu M, Simister R, Webster NS, Thomas T. Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. ISME J. 2013;7(5):12–1002. https://doi.org/10.1038/ismej.2012.165.
Article
CAS
Google Scholar
Lokmer A, Wegner KM. Hemolymph microbiome of Pacific oysters in response to temperature, temperature stress and infection. ISME J. 2014;9(3):13–682. https://doi.org/10.1038/ismej.2014.160.
Article
CAS
Google Scholar
Sunagawa S, DeSantis TZ, Piceno YM, Brodie EL, DeSalvo MK, Voolstra CR, et al. Bacterial diversity and white plague disease-associated community changes in the Caribbean coral Montastraea faveolata. ISME J. 2009;3(5):10–521. https://doi.org/10.1038/ismej.2008.131.
Article
CAS
Google Scholar
Hadaidi G, Ziegler M, Aeby G, Shore-Maggio A, Voolstra CR. Ecological and molecular characterization of a coral black band disease outbreak in the Red Sea during a bleaching event. PeerJ. 2018;6:27. https://doi.org/10.7717/peerj.5169.
Article
CAS
Google Scholar
Sweet M, Bythell J. Ciliate and bacterial communities associated with white syndrome and Brown band disease in reef-building corals. Environ Microbiol. 2012;14(8):2184–99. https://doi.org/10.1111/j.1462-2920.2012.02746.x.
Article
PubMed
PubMed Central
Google Scholar
Castro APd, Jr SDA, Reis AMM, Moura RL, Francini-Filho RB, Jr GP, et al. Bacterial community associated with healthy and diseased reef coral Mussismilia hispida from eastern Brazil. Environ Microbiol. 2010;59(4):10–667. https://doi.org/10.1007/s00248-010-9646-1.
Article
Google Scholar
Brener-Raffalli K, Clerissi C, Vidal-Dupiol J, Adjeroud M, Bonhomme F, Pratlong M, et al. Thermal regime and host clade, rather than geography, drive Symbiodinium and bacterial assemblages in the scleractinian coral Pocillopora damicornis sensu lato. Microbiome. 2018;6(1):13. https://doi.org/10.1186/s40168-018-0423-6.
Sweet MJ, Bulling MT. On the importance of the microbiome and Pathobiome in coral health and disease. Front Mar Sci. 2017;4. https://doi.org/10.3389/fmars.2017.00009.
Bozo-Hurtado L, García-Amado MA, Chistoserdov A, Varela R, Narvaez JJ, Colwell R, et al. Identification of bacteria in enrichment cultures of sulfate reducers in the Cariaco Basin water column employing denaturing gradient gel electrophoresis of 16S ribosomal RNA gene fragments. Aquatic Biosystems. 2013;9(1):11. https://doi.org/10.1186/2046-9063-9-17.
Müller AL, Pelikan C, JRd R, Wasmund K, Putz M, Glombitza C, et al. Bacterial interactions during sequential degradation of cyanobacterial necromass in a sulfidic arctic marine sediment. Environ Microbiol. 2018;20(8):14. https://doi.org/10.1111/1462-2920.14297.
Article
CAS
Google Scholar
Brandt KK, Patel BKC, Ingvorsen K. Desulfocella halophila gen. nov., sp. nov., a halophilic, fatty-acid-oxidizing, sulfatereducing bacterium isolated from sediments of the Great Salt Lake. Int J Syst Bacteriol. 1999;49:8. https://doi.org/10.1099/00207713-49-1-193.
Article
Google Scholar
Kraft B, Engelen B, Goldhammer T, Lin Y-S, Cypionka H, K€onneke M. Desulfofrigus sp. prevails in sulfate-reducing dilution cultures from sediments of the Benguela upwelling area. FEMS Microbioloy Ecol. 2013;84(1):12; doi: https://doi.org/10.1111/1574-6941.12039.
Santana M, Crasnier-Mednansky M. The adaptive genome of Desulfovibrio vulgaris Hildenborough. FEMS Microbiol Lett. 2006;260(2):7–133. https://doi.org/10.1111/j.1574-6968.2006.00261.x.
Article
CAS
Google Scholar
Kuta KG, Richardson LL. Ecological aspects of black band disease of corals: relationships between disease incidence and environmental factors. Coral Reefs. 2002;21(4):6–398. https://doi.org/10.1007/s00338-002-0261-6.
Article
Google Scholar
Viehman S, Mills DK, Meichel GW, Richardson LL. Culture and identification of Desulfovibrio spp from corals infected by black band disease on Dominican and Florida Keys reefs. Diseaes Aquatic Organisms. 2006;69(1):9–127. https://doi.org/10.3354/dao069119.
Article
Google Scholar
Brownell AC, Richardson LL. Sulfate reducing bacteria as secondary and necessary pathogens in black band disease of corals. Revista de Biología Tropical. 2014;62:11. https://doi.org/10.15517/rbt.v62i0.15897.
Article
Google Scholar
Arotsker L, Kramarsky-Winter E, Ben-Dov E, Kushmaro A. Microbial transcriptome profiling of black band disease in a Faviid coral during a seasonal disease peak. Diseasea Aquatic Organisms. 2016;118(1):13–89. https://doi.org/10.3354/dao02952.
Article
CAS
Google Scholar
Neave MJ, Michell CT, Apprill A, Voolstra CR. Endozoicomonas genomes reveal functional adaptation and plasticity in bacterial strains symbiotically associated with diverse marine hosts. Sci Rep. 2017;7(1):12. https://doi.org/10.1038/srep40579.
Article
CAS
Google Scholar
Tandon K, Lu C-Y, Chiang P-W, Wada N, Yang S-H, Chan Y-F, et al. Comparative genomics: dominant coral-bacterium Endozoicomonas acroporae metabolizes dimethylsulfoniopropionate (DMSP). ISME J. 2020;14(5):14–1303. https://doi.org/10.1038/s41396-020-0610-x.
Riedel T, Spring S, Fiebig A, Petersen J, Kyrpides NC, Goker M, et al. Genome sequence of the exopolysaccharide-producing Salipiger mucosus type strain (DSM 16094(T)), a moderately halophilic member of the Roseobacter clade. Stand Genomic Sci. 2014;9(3):1331–43. https://doi.org/10.4056/sigs.4909790.
Article
PubMed
Google Scholar
Liu Y, Luo T, Lin Q, Zeng R. Draft Genome Sequence of Thiobacimonas sp. Strain D13, a Phthalate Ester-Degrading Bacterium Isolated from Deep-Sea Sediments. Microbiol Resour Announc. 2019;8(24); doi: https://doi.org/10.1128/MRA.00181-19.
Hoffmann MC, Wagner E, Langklotz S, Pfander Y, Hott S, Bandow JE, et al. Proteome profiling of the Rhodobacter capsulatus molybdenum response reveals a role of IscN in nitrogen fixation by Fe-Nitrogenase. J Bacteriol. 2015;198(4):633–43. https://doi.org/10.1128/JB.00750-15.
Article
CAS
PubMed
Google Scholar
Martinez-Perez C, Mohr W, Schwedt A, Durschlag J, Callbeck CM, Schunck H, et al. Metabolic versatility of a novel N2 -fixing Alphaproteobacterium isolated from a marine oxygen minimum zone. Environ Microbiol. 2018;20(2):755–68. https://doi.org/10.1111/1462-2920.14008.
Article
CAS
PubMed
Google Scholar
Weis JS, Weis P. Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int. 2004;30(5):685–700. https://doi.org/10.1016/j.envint.2003.11.002.
Article
CAS
PubMed
Google Scholar
Madhaiyan M, Saravanan VS, Blom J, Smits THM, Rezzonico F, Kim SJ, et al. Phytobacter palmae sp. nov., a novel endophytic, N2 fixing, plant growth promoting Gammaproteobacterium isolated from oil palm (Elaeis guineensis Jacq.). Int J Syst Evol Microbiol. 2020;70(2):841–8. https://doi.org/10.1099/ijsem.0.003834.
Sweet M, Ramsey A, Bulling M. Designer reefs and coral probiotics: great concepts but are they good practice? Biodiversity. 2017;18(1):19–22. https://doi.org/10.1080/14888386.2017.1307786.
Article
Google Scholar
Peixoto RS, Sweet M, Villela HDM, Cardoso P, Thomas T, Voolstra CR, et al. Coral probiotics: premise, promise. Prospects Annu Rev Anim Biosci. 2020;9(1):265–88. https://doi.org/10.1146/annurev-animal-090120-115444.
Zhang S, Liao S-A, Yu X, Lu H, Xian J-A, Guo H, et al. Microbial diversity ofmangrove sediment in Shenzhen Bay and gene cloning, characterization of an isolated phytase-producing strain of SPC09 B. cereus. Appl Microbiol Biotechnol. 2015;99(12):12. https://doi.org/10.1007/s00253-015-6405-8.
Article
CAS
Google Scholar
Smith GW, Hayasaka SS. Nitrogenase activity associated with Halodule wrightii roots. Appl Environ Microbiol. 1982;43(6):5–1248. https://doi.org/10.1128/AEM.43.6.1244-1248.1982.
Article
Google Scholar
Schoepf V, Grottoli AG, Warner ME, Cai W-J, Melman TF, Hoadley KD, et al. Coral Energy Reserves and Calcification in a High-CO2 World at Two Temperatures. Plos One. 2013;8(10):e75049-e. https://doi.org/10.1371/journal.pone.0075049.
Article
CAS
Google Scholar
Jeffrey SW, Humphrey GF. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochem Physiol Pflanz. 1975;167(2):191–4. https://doi.org/10.1016/s0015-3796(17)30778-3.
Article
CAS
Google Scholar
Grottoli AG, Rodrigues LJ, Juarez C. Lipids and stable carbon isotopes in two species of Hawaiian corals, Porites compressa and Montipora verrucosa, following a bleaching event. Mar Biol. 2004;145(3):621–31. https://doi.org/10.1007/s00227-004-1337-3.
Article
CAS
Google Scholar
Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Frovenzano MD, et al. Measurement of protein using Bicinchoninic acid. Anal Biochem. 1985;150(1):76–85. https://doi.org/10.1016/0003-2697(85)90442-7.
Article
CAS
PubMed
Google Scholar
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–6. https://doi.org/10.1021/ac60111a017.
Article
CAS
Google Scholar
Gnaiger E, Bittcrlich G. Proximate biochemical composition and caloric content c ilculated from elemental CHN analysis: a stoichiometric concept. Oecologia. 1984;62(3):289–98. https://doi.org/10.1007/BF00384259.
Article
CAS
PubMed
Google Scholar
Jokiel PL, Maragos JE, Franzisket L. Coral growth: buoyant weight technique. Coral Reefs Res Methods. 1978;1978:529–41.
Google Scholar
Herlemann DP, Labrenz M, Jurgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5(10):1571–9. https://doi.org/10.1038/ismej.2011.41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of highthroughput community sequencing data. Nat Methods. 2010;7(5):335–6. https://doi.org/10.1038/nmeth0510-335.
Parks DH, Tyson GW, Hugenholtz P, Beiko RG. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics. 2014;30(21):3123–4. https://doi.org/10.1093/bioinformatics/btu494.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sweet M, Burian A, Fifer J, Bulling M, Elliott D, Raymundo L. Compositional homogeneity in the pathobiome of a new, slow-spreading coral disease. Microbiome. 2019;7(1):139. https://doi.org/10.1186/s40168-019-0759-6.
Article
PubMed
PubMed Central
Google Scholar