Rimler RB, Rhoades KR. Pasteurella multocida. In: Adlam C, Rutter JM, editors. Pasteurella and Pasteurellosis. London: Academic press Limited; 1989. p. 37–73.
Google Scholar
Saif YM. Diseases of poultry. Ames: Wiley-Blackwell; 2008.
Google Scholar
Mohamed MA, Mohamed MWA, Ahmed AI. Pasteurella multocida in backyard chickens in upper Egypt: incidence with polymerase chain reaction analysis for capsule type, virulence in chicken embryos and antimicrobial resistance. Vet Ital. 2012;48(1):77–86.
PubMed
Google Scholar
Carter GR, De Alwis MCL. Haemorrhagic Septicaemia. In: Adlam C, Rutter JM, editors. Pasteurella and Pasteurellosis. London: Academic press Limited; 1989. p. 131–60.
Google Scholar
Chanter N, Rutter JM. Pasteurellosis in pigs and the determinants of virulence of toxigenic Pasteurella multocida. In: Adlam C, Rutter JM, editors. Pasteurella and Pasteurellosis. London: Academic press Limited; 1989. p. 161–95.
Google Scholar
Orth JHC, Aktories K. Pasteurella multocida toxin activates various heterotrimeric G proteins by deamidation. Toxins (Basel). 2010;2(2):205–14. https://doi.org/10.3390/toxins2020205.
Article
CAS
Google Scholar
Kloos B, Chakraborty S, Lindner SG, Noack K, Harre U, Schett G, et al. Pasteurella multocida toxin- induced osteoclastogenesis requires mTOR activation. Cell Commun Signal. 2015;1:1–13.
Google Scholar
Frank GJ. Pasteurellosis of cattle. In: Adlam C, Rutter JM, editors. Pasteurella and Pasteurellosis. London: Academic press Limited; 1989. p. 197–222.
Google Scholar
Davies RL, Watson J, Caffrey B. Comparative analyses of Pasteurella multocida strains associated with the ovine respiratory and vaginal tracts. Vet Rec. 2003;152(1):7–10. https://doi.org/10.1136/vr.152.1.7.
Article
CAS
PubMed
Google Scholar
Manning PJ, DiGiacomo RF, DeLong D. Pasteurellosis in laboratory animals. In: Adlam C, Rutter JM, editors. Pasteurella and Pasteurellosis. London: Academic press Limited; 1989. p. 264–302.
Google Scholar
Watson PJ, Davies RL. Outbreak of Pasteurella multocida septicaemia in neonatal lambs. Vet rRec. 2002;151(14):420–2. https://doi.org/10.1136/vr.151.14.420.
Article
CAS
Google Scholar
Rad M, Movassaghi AR, Sharifi K, Naseri Z, Seifi HA. Two outbreaks of Pasteurella multocida septicemia in neonatal lambs. Comp Clin Pathol. 2011;20:57–9.
Article
Google Scholar
Frederiksen W. Pasteurellosis of Man. In: Rutter CA& JM, editor. Pasteurella and Pasteurellosis. UK: Academic press Limited; 1989. p. 303–320.
Freshwater A. Why your housecat’s trite little bite could cause you quite a fright: a study of domestic felines on the occurrence and antibiotic susceptibility of Pasteurella multocida. Zoonoses Public Heal. 2008;55:507–13.
Article
CAS
Google Scholar
Oehler RL, Velez AP, Mizrachi M, Lamarche J, Gompf S. Bite-related and septic syndromes caused by cats and dogs. Lancet Infec Dise. 2009;9(7):439–47. https://doi.org/10.1016/S1473-3099(09)70110-0.
Article
Google Scholar
Harper M, Boyce JD, Adler B. Pasteurella multocida pathogenesis: 125 years after Pasteur. FEMS Microbiol Lett. 2006;265(1):1–10. https://doi.org/10.1111/j.1574-6968.2006.00442.x.
Article
CAS
PubMed
Google Scholar
Fernandez S, Galapero J, Gomez L, Perez CJ, Ramos A, Cid D, Garcia A, Rey J. Identification, capsular typing and virulence factors of Pasteurella multocida isolates from merino lambs in Extremadura (southwestern Spain). Vet Med (Praha). 2018;63(3):117–24. https://doi.org/10.17221/142/2016-VETMED.
Article
CAS
Google Scholar
Saunders JR, Allison H, James CE, McCarthy AJ, Sharp R. Phage-mediated transfer of virulence genes. J Chem Technol Biotechnol. 2001;76(7):662–6. https://doi.org/10.1002/jctb.437.
Article
CAS
Google Scholar
Brüssow H, Canchaya C, Hardt W. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Micr Mol Bio Rev. 2004;68(3):560–602. https://doi.org/10.1128/MMBR.68.3.560-602.2004.
Article
CAS
Google Scholar
Dearborn AD, Dokland T. Mobilization of pathogenicity islands by Staphylococcus aureus strain Newman bacteriophages. Bacteriophage. 2012;2(2):70–8. https://doi.org/10.4161/bact.20632.
Article
PubMed
PubMed Central
Google Scholar
Busby B, Kristensen DM, Koonin EV. Contribution of phage-derived genomic islands to the virulence of facultative bacterial pathogens. Physiol Behav. 2017;176:139–48.
Article
Google Scholar
Fortier L-C, Sekulovic O. Importance of prophages to evolution and virulence of bacterial pathogens. Virulence. 2013;4(5):354–65. https://doi.org/10.4161/viru.24498.
Article
PubMed
PubMed Central
Google Scholar
Davies EV, Winstanley C, Fothergill JL, James CE. The role of temperate bacteriophages in bacterial infection. FEMS Microbiol Lett. 2016;363:1–10.
Article
Google Scholar
Kraushaar B, Hammerl JA, Kienöl M, Heinig ML, Sperling N, Thanh MDi, et al. Acquisition of virulence factors in livestock-associated MRSA: lysogenic conversion of CC398 strains by virulence gene-containing phages. Sci Rep. 2017;7:1–13.
Feiner R, Argov T, Rabinovich L, Sigal N, Borovok I, Herskovits AA. A new perspective on lysogeny: prophages as active regulatory switches of bacteria. Natu Rev Microbiol. 2015;13(10):641–50. https://doi.org/10.1038/nrmicro3527.
Article
CAS
Google Scholar
Veses-Garcia M, Liu X, Rigden DJ, Kenny JG, McCarthy AJ, Allison HE. Transcriptomic analysis of Shiga-toxigenic bacteriophage carriage reveals a profound regulatory effect on acid resistance in Escherichia coli. Appl Env Microbiol. 2015;81(23):8118–25. https://doi.org/10.1128/AEM.02034-15.
Article
CAS
Google Scholar
Boyd EF, Brüssow H. Common themes among bacteriophage-encoded virulence factors and diversity among the bacteriophages involved. Trends Microbiol. 2002;10(11):521–9. https://doi.org/10.1016/S0966-842X(02)02459-9.
Article
CAS
PubMed
Google Scholar
Boyd EF. Bacteriophage-encoded bacterial virulence factors and phage-pathogenicity island interactions. Adv Virus Res. 2012;82:91–118. https://doi.org/10.1016/B978-0-12-394621-8.00014-5.
Article
CAS
PubMed
Google Scholar
Penadés JR, Chen J, Quiles-Puchalt N, Carpena N, Novick RP. Bacteriophage-mediated spread of bacterial virulence genes. Curr Opin Microbiol. 2015;23:171–8. https://doi.org/10.1016/j.mib.2014.11.019.
Article
CAS
PubMed
Google Scholar
Allison HE. Stx-phages : drivers and mediators of the evolution of STEC and STEC-like pathogens. Future Microbiol. 2007;2(2):165–74. https://doi.org/10.2217/17460913.2.2.165.
Article
CAS
PubMed
Google Scholar
Cheetham BF, Katz ME. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol Microbiol. 1995;18(02):201–8. https://doi.org/10.1111/j.1365-2958.1995.mmi_18020201.x.
Article
CAS
PubMed
Google Scholar
Masignani V, Giuliani MM, Tettelin H, Comanducci M, Rappuoli R, Scarlato V. Mu-like prophage in serogroup B Neisseria meningitidis coding for surface-exposed antigens. Infec Immun. 2001;69(4):2580–8. https://doi.org/10.1128/IAI.69.4.2580-2588.2001.
Article
CAS
Google Scholar
Nielsen JP, Rosdahl VT. Development and epidemiological applications of a bacteriophage typing system for typing Pasteurella multocida. J Clin Microbiol. 1990;28(1):103–7. https://doi.org/10.1128/JCM.28.1.103-107.1990.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fussing V, Nielsen JP, Bisgaard M, Meyling A. Development of a typing system for epidemiological studies of porcine toxin-producing Pasteurella multocida ssp. multocida in Denmark. Vet Microbio. 1999;65(1):61–74. https://doi.org/10.1016/S0378-1135(98)00288-0.
Article
CAS
Google Scholar
Ackermann HW, Karaivanov L. Morphology of Pasteurella multocida bacteriophages. Can J Microbiol. 1984;30(9):1141–8. https://doi.org/10.1139/m84-179.
Article
CAS
PubMed
Google Scholar
Pullinger GD, Bevir T, Lax AJ. The Pasteurella multocida toxin is encoded within a lysogenic bacteriophage. Mol Microbiol. 2004;51(1):255–69. https://doi.org/10.1046/j.1365-2958.2003.03829.x.
Article
CAS
PubMed
Google Scholar
Shayegh J, Atashpaz S, Hejazi MS. Virulence genes profile and typing of ovine 380 Pasteurella multocida. Asian J Anim Vet Adv. 2008;3(4):206–13. https://doi.org/10.3923/ajava.2008.206.213.
Article
CAS
Google Scholar
Einarsdottir T, Gunnarsson E, Sigurdardottir OG, Jorundsson E, Fridriksdottir V, Thorarinsdottir GE, et al. Variability of Pasteurella multocida isolated from icelandic sheep and detection of the toxA gene. J Med Microbiol. 2016;65(9):897–904. https://doi.org/10.1099/jmm.0.000306.
Article
CAS
PubMed
Google Scholar
Goerke C, Koller J, Wolz C. Ciprofloxacin and trimethoprim cause phage induction and virulence modulation in Staphylococcus aureus. Antimic Agents Chemoth. 2006;50(1):171–7. https://doi.org/10.1128/AAC.50.1.171-177.2006.
Article
CAS
Google Scholar
Niu YD, Cook SR, Wang J, Klima CL, Hsu Y, Kropinski AM, Turner D, McAllister TA. Comparative analysis of multiple inducible phages from Mannheimia haemolytica. BMC Microbiol. 2015;15(1):175. https://doi.org/10.1186/s12866-015-0494-5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shin H, Lee J-H, Yoon H, Kang D-H, Ryu S. Genomic investigation of lysogen formation and host lysis systems of the Salmonella temperate bacteriophage SPN9CC. Appl Env Microbiol. 2014;80(1):374–84. https://doi.org/10.1128/AEM.02279-13.
Article
CAS
Google Scholar
Williams BJ, Golomb M, Phillips T, Brownlee J, Olson MV, Smith AL. Bacteriophage HP2 of Haemophilus influenzae. J Bacteriol. 2002;184(24):6893–905. https://doi.org/10.1128/JB.184.24.6893-6905.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Campoy S, Aranda J, Àlvarez G, Barbé J, Llagostera M. Isolation and sequencing of a temperate transducing phage for Pasteurella multocida. Appl Env Microbiol. 2006;72(5):3154–60. https://doi.org/10.1128/AEM.72.5.3154-3160.2006.
Article
CAS
Google Scholar
Muniesa M, De Simon M, Prats G, Ferrer D, Pañella H, Jofre J. Shiga toxin 2-converting bacteriophages associated with clonal variability in Escherichia coli O157 : H7 strains of human origin isolated from a single outbreak. Infec Immun. 2003;71(8):4554–62. https://doi.org/10.1128/IAI.71.8.4554-4562.2003.
Article
CAS
Google Scholar
Oliveira J, Mahony J, Hanemaaijer L, Kouwen TRHM, Neve H, MacSharry J, et al. Detecting Lactococcus lactis prophages by mitomycin C-mediated induction coupled to flow cytometry analysis. Front Microbio. 2017;8:1–11.
CAS
Google Scholar
Davies RL, MacCorquodale R, Baillie S, Caffrey B. Characterization and comparison of Pasteurella multocida strains associated with porcine pneumonia and atrophic rhinitis. J Med Microbiol. 2003;52(1):59–67. https://doi.org/10.1099/jmm.0.05019-0.
Article
CAS
PubMed
Google Scholar
Davies RL, MacCorquodale R, Caffrey B. Diversity of avian Pasteurella multocida strains based on capsular PCR typing and variation of the OmpA and OmpH outer membrane proteins. Vet Microbiol. 2003;91(2-3):169–82. https://doi.org/10.1016/S0378-1135(02)00300-0.
Article
CAS
PubMed
Google Scholar
Davies RL. Genetic diversity among Pasteurella multocida strains of avian, bovine, ovine and porcine origin from England and Wales by comparative sequence analysis of the 16S rRNA gene. Microbiol. 2004;150(12):4199–210. https://doi.org/10.1099/mic.0.27409-0.
Article
CAS
Google Scholar
Davies RL, MacCorquodale R, Reilly S. Characterisation of bovine strains of Pasteurella multocida and comparison with isolates of avian, ovine and porcine origin. Vet Microbiol. 2004;99(2):145–58. https://doi.org/10.1016/j.vetmic.2003.11.013.
Article
CAS
PubMed
Google Scholar
Davies RL, Lee I. Diversity of temperate bacteriophages induced in bovine and ovine Mannheimia haemolytica isolates and identification of a new P2-like phage. FEMS Microbiol Lett. 2006;260(2):162–70. https://doi.org/10.1111/j.1574-6968.2006.00314.x.
Article
CAS
PubMed
Google Scholar
Stevenson RM, Airdrie DW. Isolation of Yersinia ruckeri bacteriophages. Appl Env Microbiol. 1984;47(6):1201–5. https://doi.org/10.1128/AEM.47.6.1201-1205.1984.
Article
CAS
Google Scholar
Poblet-Icart M, Bordons A, Lonvaud-Funel A. Lysogeny of Oenococcus oeni (syn. Leuconostoc oenos) and study of their induced bacteriophages. Curr Microbiol. 1998;36(6):365–9. https://doi.org/10.1007/s002849900324.
Article
CAS
PubMed
Google Scholar
Muniesa M, Blanco JE, De Simón M, Serra-Moreno R, Blanch AR, Jofre J. Diversity of stx2 converting bacteriophages induced from Shiga-toxin-producing Escherichia coli strains isolated from cattle. Microbiol. 2004;150(Pt 9):2959–71. https://doi.org/10.1099/mic.0.27188-0.
Article
CAS
Google Scholar
Highlander SK, Weissenberger S, Alvarez LE, Weinstock GM, Berget PB. Complete nucleotide sequence of a P2 family lysogenic bacteriophage, varphiMhaA1-PHL101, from Mannheimia haemolytica serotype A1. Virol. 2006;350(1):79–89. https://doi.org/10.1016/j.virol.2006.03.024.
Article
CAS
Google Scholar
Nale JY, Shan J, Hickenbotham PT, Fawley WN, Wilcox MH, Clokie MRJ. Diverse temperate bacteriophage carriage in Clostridium difficile 027 strains. PLoS One. 2012;7(5):e37263. https://doi.org/10.1371/journal.pone.0037263.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hsu Y-H, Cook SR, Alexander TW, Klima CL, Niu YD, Selinger LB, McAllister TA. Investigation of Mannheimia haemolytica bacteriophages relative to host diversity. J App Microbiol. 2013;114(6):1592–603. https://doi.org/10.1111/jam.12185.
Article
CAS
Google Scholar
Urban-Chmiel R, Wernicki A, Stęgierska D, Dec M, Dudzic A, Puchalski A. Isolation and characterization of lytic properties of bacteriophages specific for M haemolytica strains. PLoS One. 2015;10:e0140140.
Article
Google Scholar
Bradley DE. Ultrastructure of bacteriophage and bacteriocins. Bacteriol Rev. 1967;31(4):230–314. https://doi.org/10.1128/BR.31.4.230-314.1967.
Article
CAS
PubMed
PubMed Central
Google Scholar
Seed KD, Dennis JJ. Isolation and characterization of bacteriophages of the Burkholderia cepacia complex. FEMS Microbiol Lett. 2005;251(2):273–80. https://doi.org/10.1016/j.femsle.2005.08.011.
Article
CAS
PubMed
Google Scholar
Sekulovic O, Garneau JR, Neron A, Fortier LC. Characterization of temperate phages infecting Clostridium difficile isolates of human and animal origins. Appl Env Microbiol. 2014;80(8):2555–63. https://doi.org/10.1128/AEM.00237-14.
Article
CAS
Google Scholar
Kiliç AO, Pavlova SI, Alpay S, Kiliç SS, Tao L. Comparative study of vaginal Lactobacillus phages isolated from women in the United States and Turkey: prevalence, morphology, host range, and DNA homology. Clin Diagn Lab Immunol. 2001;8:31–9.
Article
Google Scholar
Denes T, Vongkamjan K, Ackermann HW, Moreno Switt AI, Wiedmann M, den Bakker HC. Comparative genomic and morphological analyses of Listeria phages isolated from farm environments. Appl Env Microbiol. 2014;80(15):4616–25. https://doi.org/10.1128/AEM.00720-14.
Article
CAS
Google Scholar
Sepúlveda-Robles O, Kameyama L, Guarneros G. High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Env Microbiol. 2012;78(12):4510–5. https://doi.org/10.1128/AEM.00065-12.
Article
CAS
Google Scholar
Moreno Switt AI, Orsi RH, den Bakker HC, Vongkamjan K, Altier C, Wiedmann M. Genomic characterization provides new insight into Salmonella phage diversity. BMC Genomics. 2013;14(1):481. https://doi.org/10.1186/1471-2164-14-481.
Article
CAS
PubMed
PubMed Central
Google Scholar
Canchaya C, Proux C, Fournous G, Bruttin A, Brüssow H. Prophage genomics. Microbiol Mol Biol Rev. 2003;67(2):238–76. https://doi.org/10.1128/MMBR.67.2.238-276.2003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ventura M, Canchaya C, Kleerebezem M, De Vos WM, Siezen RJ, Brüssow H. The prophage sequences of Lactobacillus plantarum strain WCFS1. Virology. 2003;316(2):245–55. https://doi.org/10.1016/j.virol.2003.08.019.
Article
CAS
PubMed
Google Scholar
Lawrence JG, Hatfull GF, Hendrix RW. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J Bacteriol. 2002;184(17):4891–905. https://doi.org/10.1128/JB.184.17.4891-4905.2002.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jakhetia R, Verma NK. Identification and molecular characterisation of a novel mu-like bacteriophage, SfMu, of Shigella flexneri. PLoS One. 2015;10(4):e0124053. https://doi.org/10.1371/journal.pone.0124053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lindbergl AA. Bacteriophage receptors. Annu Rev Microbiol. 1973;27(1):205–41. https://doi.org/10.1146/annurev.mi.27.100173.001225.
Article
Google Scholar
Rakhuba DV, Kolomiets EI, Dey ES, Novik GI. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol. 2010;59(3):145–55. https://doi.org/10.33073/pjm-2010-023.
Article
CAS
PubMed
Google Scholar
Randall-Hazelbauer L, Schwartz M. Isolation of the bacteriophage lambda receptor from Escherichia coli. J Bacteriol. 1973;116(3):1436–46. https://doi.org/10.1128/JB.116.3.1436-1446.1973.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morona R, Kramer C, Henning ULF. Bacteriophage receptor area of outer membrane protein OmpA of Escherichia coli K-12. J Bacteriol. 1985;164(2):539–43. https://doi.org/10.1128/JB.164.2.539-543.1985.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guttman B, Raya R, Kutter E. Basic phage biology. In: Kutter, E. and Sulakvelidze A, editor. Bacteriophages: Biology and Applications. Boca Raton: CRC Press; 2005. p. 28–66.
Parent KN, Erb ML, Cardone G, Nguyen K, Gilcrease EB, Porcek NB, Pogliano J, Baker TS, Casjens SR. OmpA and OmpC are critical host factors for bacteriophage Sf6 entry in Shigella. Mol Microbiol. 2014;92(1):47–60. https://doi.org/10.1111/mmi.12536.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jin Y, Sdao SM, Dover JA, Porcek NB, Knobler CM, Gelbart WM, Parent KN. Bacteriophage P22 ejects all of its internal proteins before its genome. Virology. 2015;485:128–34. https://doi.org/10.1016/j.virol.2015.07.006.
Article
CAS
PubMed
PubMed Central
Google Scholar
Porcek NB, Parent KN. Key residues of S. flexneri OmpA mediate infection by bacteriophage Sf6. Mol Biol. 2015;427(10):1964–76. https://doi.org/10.1016/j.jmb.2015.03.012.
Article
CAS
Google Scholar
Rosner H, Grimmecke H, Knirel Y, Shashkov A. Hyaluronic acid and a (1–4)-β-D-xylan, extracellular polysaccharides of Pasteurella multocida (Carter type a) strain 880. Carbohydr Res. 1992;223:329–33. https://doi.org/10.1016/0008-6215(92)80032-V.
Article
CAS
PubMed
Google Scholar
Carter GR. Some characteristics of type a strains of Pasteurella multocida. Brit Vet J. 1958;114(9):356–7. https://doi.org/10.1016/S0007-1935(17)45256-0.
Article
Google Scholar
Bfudley BYDE. The isolation and morphology of some new bacteriophages specific for Bacillus and Acetobacter species. J Gen Microbiol. 1965;41:233–41.
Article
Google Scholar
Úbeda C, Maiques E, Knecht E, Lasa Í, Novick RP, Penadés JR. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in Staphylococci. Mol Microbiol. 2005;56(3):836–44. https://doi.org/10.1111/j.1365-2958.2005.04584.x.
Article
CAS
PubMed
Google Scholar
Tormo MÁ, Ferrer MD, Maiques E, Úbeda C, Selva L, Lasa Í, et al. Staphylococcus aureus pathogenicity island DNA is packaged in particles composed of phage proteins. J Bacteriol. 2008;190(7):2434–40. https://doi.org/10.1128/JB.01349-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fillol-Salom A, Martínez-Rubio R, Abdulrahman RF, Chen O, Davies R, Penadés JR. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe. ISME J. 2018;12(9):2114–28. https://doi.org/10.1038/s41396-018-0156-3.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sambrook J, Fristch EF, Maniatis T. Molecular cloning, a laboratory manual. 2nd ed. Cold Spring Harbor, New York: Cold Spring Harbor Laboratory Press; 1989.
Google Scholar