Reynolds JF, Smith DMS, Lambin EF, Turner B, Mortimore M, Batterbury SP, Downing TE, Dowlatabadi H, Fernández RJ, Herrick JE. Global desertification: building a science for dryland development. Science. 2007;316(5826):847–51. https://doi.org/10.1126/science.1131634.
Article
CAS
PubMed
Google Scholar
Veron S, Paruelo J, Oesterheld M. Assessing desertification. J Arid Environ. 2006;66(4):751–63. https://doi.org/10.1016/j.jaridenv.2006.01.021.
Article
Google Scholar
Huang J, Zhang G, Zhang Y, Guan X, Wei Y, Guo R. Global desertification vulnerability to climate change and human activities. Land Degrad Dev. 2020;31(11):1380–91. https://doi.org/10.1002/ldr.3556.
Article
Google Scholar
Zhang Y, Cao C, Han X, Jiang S. Soil nutrient and microbiological property recoveries via native shrub and semi-shrub plantations on moving sand dunes in Northeast China. Ecol Eng. 2013;53:1–5. https://doi.org/10.1016/j.ecoleng.2013.01.012.
Article
Google Scholar
Li K, Liu R, Zhang H, Yun J. The diversity and abundance of bacteria and oxygenic phototrophs in saline biological desert crusts in Xinjiang. Northwest China Microb Ecol. 2013;66(1):40–8. https://doi.org/10.1007/s00248-012-0164-1.
Article
CAS
PubMed
Google Scholar
Du J, Yan P, Dong Y. Phenological response of Nitraria tangutorum to climate change in Minqin County, Gansu Province, Northwest China. Int J Biometeorol. 2010;54(5):583–93. https://doi.org/10.1007/s00484-010-0315-3.
Article
PubMed
Google Scholar
Eriksson M. Afforestation and avoided deforestation in a multi-regional integrated assessment model. Ecol Econ. 2020;169:106452. https://doi.org/10.1016/j.ecolecon.2019.106452.
Article
Google Scholar
Fernandes GW, Coelho MS, Machado RB, Ferreira ME, de Souza Aguiar LM, Dirzo R, Scariot A, Lopes CR. Afforestation of savannas: an impending ecological disaster. Nat Conservacao. 2016;14(2):146–51. https://doi.org/10.1016/j.ncon.2016.08.002.
Article
Google Scholar
Li XR, Ma FY, Xiao HL, Wang XP, Kim KC. Long-term effects of revegetation on soil water content of sand dunes in arid region of northern China. J Arid Environ. 2004;57(1):1–16. https://doi.org/10.1016/S0140-1963(03)00089-2.
Article
Google Scholar
Sohng J, Singhakumara BMP, Ashton MS. Effects on soil chemistry of tropical deforestation for agriculture and subsequent reforestation with special reference to changes in carbon and nitrogen. For Ecol Manag. 2017;389:331–40. https://doi.org/10.1016/j.foreco.2016.12.013.
Article
Google Scholar
Kassa H, Dondeyne S, Poesen J, Frankl A, Nyssen J. Impact of deforestation on soil fertility, soil carbon and nitrogen stocks: the case of the Gacheb catchment in the White Nile Basin. Ethiopia Agr Ecosyst Environ. 2017;247:273–82. https://doi.org/10.1016/j.agee.2017.06.034.
Article
Google Scholar
Pontes PRM, Cavalcante RBL, Sahoo PK, da silva Junior RO, da Silva MS, Dall’Agnol R, Siqueira JO. The role of protected and deforested areas in the hydrological processes of Itacaiunas River Basin, eastern Amazonia. J Environ Manag. 2019;235:489–99. https://doi.org/10.1016/j.jenvman.2019.01.090.
Article
Google Scholar
Sambe LN, Adeofun CO, Dachung G. The economic and ecological effects of deforestation on the Nigerian environment. Asian J Adv Res Rep. 2018:1–25. https://doi.org/10.9734/ajarr/2018/v1i213038.
Pv G, Van Veen J, Van Elsas J. Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol. 2004;42(1):243–70. https://doi.org/10.1146/annurev.phyto.42.012604.135455.
Article
CAS
Google Scholar
Prestel E, Regeard C, Salamitou S, Neveu J, DuBow MS. The bacteria and bacteriophages from a Mesquite flats site of the Death Valley desert. Antonie Van Leeuwenhoek. 2013;103(6):1329–41. https://doi.org/10.1007/s10482-013-9914-4.
Article
PubMed
Google Scholar
Krishna P, Babu AG, Reddy MS. Bacterial diversity of extremely alkaline bauxite residue site of alumina industrial plant using culturable bacteria and residue 16S rRNA gene clones. Extremophiles. 2014;18(4):665–76. https://doi.org/10.1007/s00792-014-0647-8.
Article
CAS
PubMed
Google Scholar
Pérez-Fernández MA, Calvo-Magro E, Valentine A. Benefits of the symbiotic association of shrubby legumes for the rehabilitation of degraded soils under Mediterranean climatic conditions. Land Degrad Dev. 2016;27(2):395–405. https://doi.org/10.1002/ldr.2457.
Article
Google Scholar
Andrew DR, Fitak RR, Munguia-Vega A, Racolta A, Martinson VG, Dontsova K. Abiotic factors shape microbial diversity in Sonoran Desert soils. Appl Environ Microbiol. 2012;78(21):7527–37. https://doi.org/10.1128/AEM.01459-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tian Q, Taniguchi T, Shi W-Y, Li G, Yamanaka N, Du S. Land-use types and soil chemical properties influence soil microbial communities in the semiarid loess plateau region in China. Sci Rep. 2017;7(1):45289. https://doi.org/10.1038/srep45289.
Article
CAS
PubMed
PubMed Central
Google Scholar
Liu Y, Zhang L, Lu J, Chen W, Wei G, Lin Y. Topography affects the soil conditions and bacterial communities along a restoration gradient on loess-plateau. Appl Soil Ecol. 2020;150:103471. https://doi.org/10.1016/j.apsoil.2019.103471.
Article
Google Scholar
Yuanyuan Y, Yin Z, Zhou S, Rossel RAV, Liang Z, Haizhen W, Lianqing Z, Wu Y. Interactive effects of elevation and land use on soil bacterial communities in the Tibetan plateau. Pedosphere. 2020;30(6):817–31. https://doi.org/10.1016/S1002-0160(19)60836-2.
Article
Google Scholar
Vieira S, Sikorski J, Dietz S, Herz K, Schrumpf M, Bruelheide H, Scheel D, Friedrich MW, Overmann J. Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME J. 2020;14(2):463–75. https://doi.org/10.1038/s41396-019-0543-4.
Article
CAS
PubMed
Google Scholar
Feeser KL, Van Horn DJ, Buelow HN, Colman DR, McHugh TA, Okie JG, Schwartz E, Takacs-Vesbach CD. Local and regional scale heterogeneity drive bacterial community diversity and composition in a polar desert. Front Microbiol. 2018;9:1928. https://doi.org/10.3389/fmicb.2018.01928.
Article
PubMed
PubMed Central
Google Scholar
Kim JM, Roh A-S, Choi S-C, Kim E-J, Choi M-T, Ahn B-K, Kim S-K, Lee Y-H, Joa J-H, Kang S-S. Soil pH and electrical conductivity are key edaphic factors shaping bacterial communities of greenhouse soils in Korea. J Microbiol. 2016;54(12):838–45. https://doi.org/10.1007/s12275-016-6526-5.
Article
CAS
PubMed
Google Scholar
Cai M, Peng X, Cheng X, Liu L, Xing S, Shang T, Han H. Soil element stoichiometry drives bacterial community composition following thinning in a larix plantation in the subalpine regions of northern China. Forests. 2020;11(3):261. https://doi.org/10.3390/f11030261.
Article
Google Scholar
Liu J, Sui Y, Yu Z, Shi Y, Chu H, Jin J, Liu X, Wang G. High throughput sequencing analysis of biogeographical distribution of bacterial communities in the black soils of Northeast China. Soil Biol Biochem. 2014;70:113–22. https://doi.org/10.1016/j.soilbio.2013.12.014.
Article
CAS
Google Scholar
Beneduzi A, Moreira F, Costa PB, Vargas LK, Lisboa BB, Favreto R, Baldani JI, Passaglia LMP. Diversity and plant growth promoting evaluation abilities of bacteria isolated from sugarcane cultivated in the south of Brazil. Appl Soil Ecol. 2013;63:94–104. https://doi.org/10.1016/j.apsoil.2012.08.010.
Article
Google Scholar
Ni J, Wu X, Zhang H, Liu T, Zhang L. Comparative analysis of salt tolerance of three Nitraria species. For Res. 2012;25(2):48–53. https://doi.org/10.1007/s11783-011-0280-z.
Article
CAS
Google Scholar
Stomeo F, Valverde A, Pointing SB, McKay CP, Warren-Rhodes KA, Tuffin MI, Seely M, Cowan DA. Hypolithic and soil microbial community assembly along an aridity gradient in the Namib Desert. Extremophiles. 2013;17(2):329–37. https://doi.org/10.1007/s00792-013-0519-7.
Article
PubMed
Google Scholar
Liu X, He Y, Zhao X, Zhang T, Li Y, Yun J, Wei S, Yue X. The response of soil water and deep percolation under Caragana microphylla to rainfall in the Horqin sand land, northern China. Catena. 2016;139:82–91. https://doi.org/10.1016/j.catena.2015.12.006.
Article
Google Scholar
Chen L, Wang J, Wei W, Fu B, Wu D. Effects of landscape restoration on soil water storage and water use in the loess plateau region. China For Ecol Manage. 2010;259(7):1291–8. https://doi.org/10.1016/j.foreco.2009.10.025.
Article
Google Scholar
Kavamura VN, Taketani RG, Lançoni MD, Andreote FD, Mendes R, de Melo IS. Water regime influences bulk soil and rhizosphere of Cereus jamacaru bacterial communities in the Brazilian Caatinga biome. PLoS One. 2013;8(9):e73606. https://doi.org/10.1371/journal.pone.0073606.
Article
CAS
Google Scholar
McCaig AE, Glover LA, Prosser JI. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol. 1999;65(6):1721–30. https://doi.org/10.1016/S0003-4975(02)04832-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fazi S, Amalfitano S, Pernthaler J, Puddu A. Bacterial communities associated with benthic organic matter in headwater stream microhabitats. Environ Microbiol. 2005;7(10):1633–40. https://doi.org/10.1111/j.1462-2920.2005.00857.x.
Article
CAS
PubMed
Google Scholar
Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria. Ecology. 2007;88(6):1354–64. https://doi.org/10.1890/05-1839.
Article
PubMed
Google Scholar
Dion P. Extreme views on prokaryote evolution. Microbiol Extreme Soils. 2008:45–70. https://doi.org/10.1007/978-3-540-74231-9_3.
Philippot L, Andersson SG, Battin TJ, Prosser JI, Schimel JP, Whitman WB, Hallin S. The ecological coherence of high bacterial taxonomic ranks. Nat Rev Microbiol. 2010;8(7):523–9. https://doi.org/10.1038/nrmicro2367.
Article
CAS
PubMed
Google Scholar
Bardhan S, Jose S, Jenkins MA, Webster CR, Udawatta RP, Stehn SE. Microbial community diversity and composition across a gradient of soil acidity in spruce–fir forests of the southern Appalachian Mountains. Appl Soil Ecol. 2012;61:60–8. https://doi.org/10.1016/j.apsoil.2012.04.010.
Article
Google Scholar
Cregger MA, Schadt CW, McDowell NG, Pockman WT, Classen AT. Response of the soil microbial community to changes in precipitation in a semiarid ecosystem. Appl Environ Microbiol. 2012;78(24):8587–94. https://doi.org/10.1128/AEM.02050-12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wieland G, Neumann R, Backhaus H. Variation of microbial communities in soil, rhizosphere, and rhizoplane in response to crop species, soil type, and crop development. Appl Environ Microbiol. 2001;67(12):5849–54. https://doi.org/10.1128/AEM.67.12.5849-5854.2001.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kowalchuk GA, Buma DS, de Boer W, Klinkhamer PG, van Veen JA. Effects of above-ground plant species composition and diversity on the diversity of soil-borne microorganisms. Antonie Van Leeuwenhoek. 2002;81(1):509–20. https://doi.org/10.1023/A:1020565523615.
Article
PubMed
Google Scholar
Salles JF, Van Veen JA, Van Elsas JD. Multivariate analyses of Burkholderia species in soil: effect of crop and land use history. Appl Environ Microbiol. 2004;70(7):4012–20. https://doi.org/10.1128/AEM.70.7.4012-4020.2004.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wei Y, Bu J, Long H, Zhang X, Cai X, Huang A, Ren W, Xie Z. Community structure of protease-producing bacteria cultivated from aquaculture systems: potential impact of a tropical environment. Front Microbiol. 2021;12. https://doi.org/10.3389/fmicb.2021.638129.
Amann RI, Ludwig W, Schleifer K-H. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev. 1995;59(3):143–69. https://doi.org/10.1016/S0882-4010(95)90076-4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zhang L, Zhang Q, Luo X, Tang Y, Dai J, Li Y, Wang Y, Chen G, Fang C. Pontibacter korlensis sp. nov., isolated from the desert of Xinjiang, China. Int J Syst Evol Microbiol. 2008;58(5):1210–4. https://doi.org/10.1099/ijs.0.65667-0.
Article
CAS
PubMed
Google Scholar
Nocker A, Burr M, Camper AK. Genotypic microbial community profiling: a critical technical review. Microb Ecol. 2007;54(2):276–89. https://doi.org/10.1007/s00248-006-9199-5.
Article
CAS
PubMed
Google Scholar
Han J, Song Y, Liu Z, Hu Y. Culturable bacterial community analysis in the root domains of two varieties of tree peony (Paeonia ostii). FEMS Microbiol Lett. 2011;322(1):15–24. https://doi.org/10.1111/j.1574-6968.2011.02319.x.
Article
CAS
PubMed
Google Scholar
Wang X-D, Qiu S-Y, Li P, Ban S-D. Analysis of microbial community structure in traditional and automated Moutai-flavor Daqu. J Am Soc Brew Chem. 2019;77(2):140–6. https://doi.org/10.1080/03610470.2019.1569886.
Article
CAS
Google Scholar
Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN. Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett. 2008;278(1):1–9. https://doi.org/10.1111/j.1574-6968.2007.00918.x.
Article
CAS
PubMed
Google Scholar
Nilsson RH, Anslan S, Bahram M, Wurzbacher C, Baldrian P, Tedersoo L. Mycobiome diversity: high-throughput sequencing and identification of fungi. Nat Rev Microbiol. 2019;17(2):95–109. https://doi.org/10.1038/s41579-018-0116-y.
Article
CAS
PubMed
Google Scholar
Anguita-Maeso M, Olivares-Garcia C, Haro C, Imperial J, Navas-Cortes JA, Landa BB. Culture-dependent and culture-independent characterization of the olive xylem microbiota: effect of sap extraction methods. Front Plant Sci. 2020;10. https://doi.org/10.3389/fpls.2019.01708.
Buee M, Reich M, Murat C, Morin E, Nilsson R, Uroz S, Martin F. 454 pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity. New Phytol. 2009;184(2):449–56. https://doi.org/10.1111/j.1469-8137.2009.03003.x.
Article
CAS
PubMed
Google Scholar
Chen YG, Cui XL, Kroppenstedt RM, Stackebrandt E, Wen ML, Xu LH, Jiang CL. Nocardiopsis quinghaiensis sp. nov., isolated from saline soil in China. Int J Syst Evol Microbiol. 2008;58(3):699–705. https://doi.org/10.1099/ijs.0.65441-0.
Article
CAS
PubMed
Google Scholar
Joung Y, Kim H, Ahn TS, Jon K. Pontibacter salisaro sp. nov., isolated from a clay tablet solar saltern in Korea. J Microbiol. 2011;49:290. https://doi.org/10.1007/s12275-011-0093-6.
Article
CAS
PubMed
Google Scholar
Nacke H, Thürmer A, Wollherr A, Will C, Hodac L, Herold N, Schöning I, Schrumpf M, Daniel R. Pyrosequencing-based assessment of bacterial community structure along different management types in German forest and grassland soils. PLoS One. 2011;6(2):e17000. https://doi.org/10.1371/journal.pone.0017000.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shen C, Xiong J, Zhang H, Feng Y, Lin X, Li X, Liang W, Chu H. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem. 2013;57:204–11. https://doi.org/10.1016/j.soilbio.2012.07.013.
Article
CAS
Google Scholar
Gao J, Luo Y, Wei Y, Huang Y, Zhang H, He W, Sheng H, An L. Screening of plant growth promoting bacteria (PGPB) from rhizosphere and bulk soil of Caragana microphylla in different habitats and their effects on the growth of Arabidopsis seedlings. Biotechnol Biotechnol Equip. 2019;33(1):921–30. https://doi.org/10.1080/13102818.2019.1629841.
Article
CAS
Google Scholar
De Vos B, Lettens S, Muys B, Deckers JA. Walkley-black analysis of forest soil organic carbon: recovery, limitations and uncertainty. Soil Use Manag. 2007;23(3):221–9. https://doi.org/10.1111/j.1475-2743.2007.00084.x.
Article
Google Scholar
Murphy J, Riley JP. A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta. 1962;27:678–81. https://doi.org/10.1016/S0003-2670(00)88444-5.
Article
Google Scholar
Sochan A, Bieganowski A, Ryzak M, Dobrowolski R, Bartminski P. Comparison of soil texture determined by two dispersion units of Mastersizer 2000. Int Agrophys. 2012;26(1):99–102. https://doi.org/10.2478/v10247-012-0015-9.
Article
Google Scholar
Reasoner DJ, Geldreich EE. A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol. 1985;49(4):1–7. https://doi.org/10.1016/0141-4607(85)90029-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sun L, Qiu F, Zhang X, Dai X, Dong X, Song W. Endophytic bacterial diversity in rice (Oryza sativa L.) roots estimated by 16S rDNA sequence analysis. Microb Ecol. 2008;55:415–24. https://doi.org/10.1007/s00248-007-9287-1.
Article
CAS
PubMed
Google Scholar
Marquez-Santacruz HA, Hernandez-Leon R, Orozco-Mosqueda MC, Velazquez-Sepulveda I, Santoyo G. Diversity of bacterial endophytes in roots of Mexican husk tomato plants (Physalis ixocarpa) and their detection in the rhizosphere. Genet Mol Res. 2010;9(4):2372–80. https://doi.org/10.4238/vol9-4gmr921.
Article
CAS
PubMed
Google Scholar
Mishra PK, Bisht SC, Ruwari P, Selvakumar G, Joshi GK, Bisht JK, Bhatt JC, Gupta HS. Alleviation of cold stress in inoculated wheat (Triticum aestivum L.) seedlings with psychrotolerant Pseudomonads from NW Himalayas. Arch Microbiol. 2011;193:497–513. https://doi.org/10.1007/s00203-011-0693-x.
Article
CAS
PubMed
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. https://doi.org/10.1038/nmeth.f.303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Clarke K, Warwick R. A further biodiversity index applicable to species lists: variation in taxonomic distinctness. Mar Ecol Prog Ser. 2001;216:265–78. https://doi.org/10.3354/meps216265.
Article
Google Scholar
Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):1–18. https://doi.org/10.1186/gb-2011-12-6-r60.
Article
Google Scholar
Lai J. Canoco 5: a new version of an ecological multivariate data ordination program. Biodivers Sci. 2013;21(6):765–8. https://doi.org/10.3724/SP.J.1003.2013.04133.
Article
Google Scholar
Jari O, F. Guillaume B, Michael F, Roeland K, Pierre L, Dan M, Peter RM, O’Hara RB, Gavin LS, Peter S, et al: Vegan: community ecology package. R Package Version 2.0–10. http://CRAN.R-project.org/package=vegan; 2013.
Google Scholar