Kadotani N, Nakayashiki H, Tosa Y, Mayama S. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant-Microbe Interact. 2003;16(9):769–76.
Article
CAS
PubMed
Google Scholar
Dean R, Van Kan JA, Pretorius ZA, Hammond-Kosack KE, Di Pietro A, Spanu PD, Rudd JJ, Dickman M, Kahmann R, Ellis J, et al. The top 10 fungal pathogens in molecular plant pathology. Mol Plant Pathol. 2012;13(4):414–30.
Article
PubMed
PubMed Central
Google Scholar
Oerke EC: Rice blast disease: Edited by R. S. Zeigler, S. A. Leong and P. S. Teng. CAB International, Wallingford, UK, in association with the International Rice Research Institute, Los Baños, 1994. 626 pp. Price: US$135 (hardback). ISBN 0 85198 935 7. Agricultural Systems 1996, 51(3):367–369.
Talbot NJ. On the trail of a cereal killer: exploring the biology of Magnaporthe grisea. Annu Rev Microbiol. 2003;57:177–202.
Article
CAS
PubMed
Google Scholar
Khush GS, Jena KK. Current Status and Future Prospects for Research on Blast Resistance in Rice (Oryza sativa L.). In: Advances in Genetics, Genomics and Control of Rice Blast Disease. Dordrecht: Springer; 2009: p. 1–10.
Jeon J, Choi J, Park J, Lee Y-H. Functional genomics in the rice blast fungus to unravel the fungal pathogenicity. J Zhejiang Univ Sci B. 2008;9(10):747–52.
Article
CAS
PubMed
PubMed Central
Google Scholar
Karin M. Too many transcription factors: positive and negative interactions. New Biol. 1990;2(2):126–31.
CAS
PubMed
Google Scholar
Latchman DS. Transcription factors: an overview. Int J Biochem Cell Biol. 1997;29(12):1305–12.
Article
CAS
PubMed
Google Scholar
Lee TI, Young RA. Transcription of eukaryotic protein-coding genes. Annu Rev Genet. 2000;34:77–137.
Article
CAS
PubMed
Google Scholar
Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell. 2007;128(4):707–19.
Article
CAS
PubMed
Google Scholar
Yin WB, Reinke AW, Szilagyi M, Emri T, Chiang YM, Keating AE, Pocsi I, Wang CC, Keller NP. bZIP transcription factors affecting secondary metabolism, sexual development and stress responses in Aspergillus nidulans. Microbiology (Reading, England). 2013;159(Pt 1):77–88.
Article
CAS
Google Scholar
Kim S, Park S-Y, Kim KS, Rho H-S, Chi M-H, Choi J, Park J, Kong S, Park J, Goh J, et al. Homeobox transcription factors are required for Conidiation and Appressorium development in the Rice blast fungus Magnaporthe oryzae. PLoS Genet. 2009;5(12):e1000757.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nishimura M, Fukada J, Moriwaki A, Fujikawa T, Ohashi M, Hibi T, Hayashi N. Mstu1, an APSES transcription factor, is required for Appressorium-mediated infection inMagnaporthe grisea. Biosci Biotechnol Biochem. 2014;73(8):1779–86.
Article
CAS
Google Scholar
Odenbach D, Breth B, Thines E, Weber RW, Anke H, Foster AJ. The transcription factor Con7p is a central regulator of infection-related morphogenesis in the rice blast fungus Magnaporthe grisea. Mol Microbiol. 2007;64(2):293–307.
Article
CAS
PubMed
Google Scholar
Lu J, Cao H, Zhang L, Huang P, Lin F. Systematic analysis of Zn2Cys6 transcription factors required for development and pathogenicity by high-throughput gene knockout in the Rice blast fungus. PLoS Pathog. 2014;10(10):e1004432.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mehrabi R, Kema GHJ. Genes controlling the infection process of the wheat septoria tritici blotch pathogen Mycosphaerella graminicola (session 3: pathogen genetics and genomics); 2008.
Google Scholar
Nuruzzaman M, Sharoni AM, Kikuchi S. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front Microbiol. 2013;4:248.
Article
PubMed
PubMed Central
Google Scholar
Guo M, Chen Y, Du Y, Dong Y, Guo W, Zhai S, Zhang H, Dong S, Zhang Z, Wang Y, et al. The bZIP transcription factor MoAP1 mediates the oxidative stress response and is critical for pathogenicity of the Rice blast fungus Magnaporthe oryzae. PLoS Pathog. 2011;7(2):e1001302.
Article
CAS
PubMed
PubMed Central
Google Scholar
Tepper RG, Ashraf J, Kaletsky R, Kleemann G, Murphy CT, Bussemaker HJ. PQM-1 complements DAF-16 as a key transcriptional regulator of DAF-2-mediated development and longevity. Cell. 2013;154(3):676–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lin X-X, Sen I, Janssens GE, Zhou X, Fonslow BR, Edgar D, Stroustrup N, Swoboda P, Yates JR, Ruvkun G, et al. DAF-16/FOXO and HLH-30/TFEB function as combinatorial transcription factors to promote stress resistance and longevity. Nat Commun. 2018;9(1):4400.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rizet G. Multiplicity of genetic mechanisms leading to barring in Podospora anseria. Comptes Rendus Hebdomadaires Des Seances De l’Academie Des Sci. 1953;237(13):666–8.
CAS
Google Scholar
Osiewacz HD. Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev. 2002;1(3):425–42.
Article
CAS
PubMed
Google Scholar
Tudzynski P, Esser K. Chromosomal and extrachromosomal control of senescence in the ascomycete Podospora anserina. Mol Gen Genet MGG. 1979;173(1):71–84.
Article
CAS
PubMed
Google Scholar
Tudzynski P, Esser K. Inhibitors of mitochondrial function prevent senescence in the ascomycete Podosprora anserina. Mol Gen Genet. 1977;153(1):111–3.
Article
CAS
PubMed
Google Scholar
Esser K, Keller W. Genes inhibiting senescence in the ascomycete Podospora anserina. Mol Gen Genet MGG. 1976;144(1):107–10.
Article
CAS
PubMed
Google Scholar
Cummings TG, Cooper CL. A cybernetic framework for studying occupational stress. Hum Relat. 1979;32(5):395–418.
Article
Google Scholar
Stahl U, Lemke PA, Tudzynski P, Kück U, Esser K. Evidence for plasmid like DNA in a filamentous fungus, the ascomycete Podospora anserina. Mol Gen Genet MGG. 1978;162(3):341–3.
Article
CAS
PubMed
Google Scholar
Borghouts C, Kimpel E, Osiewacz HD. Mitochondrial DNA rearrangements of <em> Podospora anserina </em> are under the control of the nuclear gene grisea. Proc Natl Acad Sci. 1997;94(20):10768–73.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silar P, Koll F, Rossignol M. Cytosolic ribosomal mutations that abolish accumulation of circular intron in the mitochondria without preventing senescence of Podospora anserina. Genetics. 1997;145(3):697–705.
CAS
PubMed
PubMed Central
Google Scholar
Chan DC. Fusion and fission: interlinked processes critical for mitochondrial health. Annu Rev Genet. 2012;46:265–87.
Article
CAS
PubMed
Google Scholar
Hoitzing H, Johnston IG, Jones NS. What is the function of mitochondrial networks? A theoretical assessment of hypotheses and proposal for future research. BioEssays. 2015;37(6):687–700.
Article
PubMed
PubMed Central
Google Scholar
Suarez-Rivero JM, Villanueva-Paz M, de la Cruz-Ojeda P, de la Mata M, Cotan D, Oropesa-Avila M, de Lavera I, Alvarez-Cordoba M, Luzon-Hidalgo R, Sanchez-Alcazar JA. Mitochondrial Dynamics in Mitochondrial Diseases. Diseases. 2016;5:1.
Article
CAS
PubMed Central
Google Scholar
Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123(3):951–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Osiewacz HD. Mitochondrial quality control in aging and lifespan control of the fungal aging model Podospora anserina. Biochem Soc Trans. 2011;39(5):1488–92.
Article
CAS
PubMed
Google Scholar
Osiewacz HD, Scheckhuber CQ. Impact of ROS on ageing of two fungal model systems: Saccharomyces cerevisiae and Podospora anserina. Free Radic Res. 2006;40(12):1350–8.
Article
CAS
PubMed
Google Scholar
Ugidos A, Nyström T, Caballero A. Perspectives on the mitochondrial etiology of replicative aging in yeast. Exp Gerontol. 2010;45(7):512–5.
Article
CAS
PubMed
Google Scholar
Osiewacz HD, Bernhardt D. Mitochondrial quality control: impact on aging and life span - a mini-review. Gerontology. 2013;59(5):413–20.
Article
PubMed
Google Scholar
Bambach A, Fernandes MP, Ghosh A, Kruppa M, Alex D, Li D, Fonzi WA, Chauhan N, Sun N, Agrellos OA, et al. Goa1p of Candida albicans localizes to the mitochondria during stress and is required for mitochondrial function and virulence. Eukaryot Cell. 2009;8(11):1706–20.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shingu-Vazquez M, Traven A. Mitochondria and fungal pathogenesis: drug tolerance, virulence, and potential for antifungal therapy. Eukaryot Cell. 2011;10(11):1376–83.
Article
CAS
PubMed
PubMed Central
Google Scholar
Qu Y, Jelicic B, Pettolino F, Perry A, Lo TL, Hewitt VL, Bantun F, Beilharz TH, Peleg AY, Lithgow T, et al. Mitochondrial sorting and assembly machinery subunit Sam37 in Candida albicans: insight into the roles of mitochondria in fitness, cell wall integrity, and virulence. Eukaryot Cell. 2012;11(4):532–44.
Article
CAS
PubMed
PubMed Central
Google Scholar
Morales DK, Grahl N, Okegbe C, Dietrich LE, Jacobs NJ, Hogan DA. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines. mBio. 2013;4(1):e00526–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Calderone R, Li D, Traven A. System-level impact of mitochondria on fungal virulence: to metabolism and beyond. FEMS Yeast Res. 2015;15(4):fov027.
Article
CAS
PubMed
PubMed Central
Google Scholar
She X, Zhang L, Chen H, Calderone R, Li D. Cell surface changes in the Candida albicans mitochondrial mutant goa1Delta are associated with reduced recognition by innate immune cells. Cell Microbiol. 2013;15(9):1572–84.
Article
CAS
PubMed
PubMed Central
Google Scholar
Venkatesh S, Lee J, Singh K, Lee I, Suzuki CK. Multitasking in the mitochondrion by the ATP-dependent Lon protease. Biochim Biophys Acta. 2012;1823(1):56–66.
Article
CAS
PubMed
Google Scholar
Su S, Stephens BB, Alexandre G, Farrand SK. Lon protease of the alpha-proteobacterium Agrobacterium tumefaciens is required for normal growth, cellular morphology and full virulence. Microbiology (Reading, England). 2006;152(Pt 4):1197–207.
Article
CAS
Google Scholar
Lan L, Deng X, Xiao Y, Zhou JM, Tang X. Mutation of Lon protease differentially affects the expression of Pseudomonas syringae type III secretion system genes in rich and minimal media and reduces pathogenicity. Mol Plant-Microbe Interact. 2007;20(6):682–96.
Article
CAS
PubMed
Google Scholar
Adam C, Picard M, Dequard-Chablat M, Sellem CH, Hermann-Le Denmat S, Contamine V. Biological roles of the Podospora anserina mitochondrial Lon protease and the importance of its N-domain. PLoS One. 2012;7(5):e38138.
Article
CAS
PubMed
PubMed Central
Google Scholar
Takeuchi K, Tsuchiya W, Noda N, Suzuki R, Yamazaki T, Haas D. Lon protease negatively affects GacA protein stability and expression of the Gac/Rsm signal transduction pathway in Pseudomonas protegens. Environ Microbiol. 2014;16(8):2538–49.
Article
CAS
PubMed
Google Scholar
Li J, Liang X, Wei Y, Liu J, Lin F, Zhang S-H. An ATP-dependent protease homolog ensures basic standards of survival and pathogenicity for Magnaporthe oryzae. Eur J Plant Pathol. 2014;141(4):703–16.
Article
CAS
Google Scholar
Cui X, Wei Y, Wang YH, Li J, Wong FL, Zheng YJ, Yan H, Liu SS, Liu JL, Jia BL, et al. Proteins interacting with mitochondrial ATP-dependent Lon protease (MAP1) in Magnaporthe oryzae are involved in rice blast disease. Mol Plant Pathol. 2015;16(8):847–59.
Article
CAS
PubMed
PubMed Central
Google Scholar
Leigh-Brown S, Enriquez JA, Odom DT. Nuclear transcription factors in mammalian mitochondria. Genome Biol. 2010;11(7):215.
Article
CAS
PubMed
PubMed Central
Google Scholar
Falkenberg M, Larsson NG, Gustafsson CM. DNA replication and transcription in mammalian mitochondria. Annu Rev Biochem. 2007;76:679–99.
Article
CAS
PubMed
Google Scholar
Woodson JD, Chory J. Coordination of gene expression between organellar and nuclear genomes. Nat Rev Genet. 2008;9(5):383–95.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thorslund T, Sunesen M, Bohr VA, Stevnsner T. Repair of 8-oxoG is slower in endogenous nuclear genes than in mitochondrial DNA and is without strand bias. DNA Repair. 2002;1(4):261–73.
Article
CAS
PubMed
Google Scholar
Woldringh CL, van Iterson W. Effects of treatment with sodium dodecyl sulfate on the ultrastructure of Escherichia coli. J Bacteriol. 1972;111(3):801–13.
Article
CAS
PubMed
PubMed Central
Google Scholar
Roncero C, Duran A. Effect of Calcofluor white and Congo red on fungal cell wall morphogenesis: in vivo activation of chitin polymerization. J Bacteriol. 1985;163(3):1180–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruno VM, Kalachikov S, Subaran R, Nobile CJ, Kyratsous C, Mitchell AP. Control of the C. albicans Cell Wall Damage Response by Transcriptional Regulator Cas5. PLoS Pathog. 2006;2(3):e21.
Article
CAS
PubMed
PubMed Central
Google Scholar
Askari Seyahooei M, Alphen J, Kraaijeveld K. Metabolic rate affects adult life span independently of developmental rate in parasitoid wasps. Biol J Linn Soc. 2011;103:45–56.
Article
Google Scholar
Pettersen Amanda K, White Craig R, Marshall Dustin J. Metabolic rate covaries with fitness and the pace of the life history in the field. Proc R Soc B Biol Sci. 2016;283(1831):20160323.
Article
CAS
Google Scholar
Porta EA. Pigments in Aging: An Overview. Ann N Y Acad Sci. 2002;959(1):57–65.
Article
CAS
PubMed
Google Scholar
Geydan TD, Debets AJ, Verkley GJ, van Diepeningen AD. Correlated evolution of senescence and ephemeral substrate use in the Sordariomycetes. Mol Ecol. 2012;21(11):2816–28.
Article
PubMed
Google Scholar
Cui X, Wei Y, Xie XL, Chen LN, Zhang SH. Mitochondrial and peroxisomal Lon proteases play opposing roles in reproduction and growth but co-function in the normal development, stress resistance and longevity of Thermomyces lanuginosus. Fungal Genet Biol. 2017;103:42–54.
Article
CAS
PubMed
Google Scholar
Yang J, Zhao X, Sun J, Kang Z, Ding S, Xu JR, Peng YL. A novel protein Com1 is required for normal conidium morphology and full virulence in Magnaporthe oryzae. Mol Plant-Microbe Interact. 2010;23(1):112–23.
Article
CAS
PubMed
Google Scholar
Langfelder K, Streibel M, Jahn B, Haase G, Brakhage AA. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol. 2003;38(2):143–58.
Article
CAS
PubMed
Google Scholar
Howard RJ, Valent B. Breaking and entering: host penetration by the fungal rice blast pathogen Magnaporthe grisea. Annu Rev Microbiol. 1996;50:491–512.
Article
CAS
PubMed
Google Scholar
Griffiths SA, Cox RJ, Overdijk EJR, Mesarich CH, Saccomanno B, Lazarus CM, de Wit PJGM, Collemare J. Assignment of a dubious gene cluster to melanin biosynthesis in the tomato fungal pathogen Cladosporium fulvum. PLoS One. 2019;13(12):e0209600.
Article
Google Scholar
Gomez BL, Nosanchuk JD. Melanin and fungi. Curr Opin Infect Dis. 2003;16(2):91–6.
Article
CAS
PubMed
Google Scholar
Nosanchuk JD, Casadevall A. The contribution of melanin to microbial pathogenesis. Cell Microbiol. 2003;5(4):203–23.
Article
CAS
PubMed
Google Scholar
Nosanchuk JD, Casadevall A. Impact of melanin on microbial virulence and clinical resistance to antimicrobial compounds. Antimicrob Agents Chemother. 2006;50(11):3519–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ruggiero C, Metter EJ, Melenovsky V, Cherubini A, Najjar SS, Ble A, Senin U, Longo DL, Ferrucci L. High basal metabolic rate is a risk factor for mortality: the Baltimore longitudinal study of aging. J Gerontol Ser A Biol Med Sci. 2008;63(7):698–706.
Article
Google Scholar
Jumpertz R, Hanson RL, Sievers ML, Bennett PH, Nelson RG, Krakoff J. Higher energy expenditure in humans predicts natural mortality. J Clin Endocrinol Metab. 2011;96(6):E972–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu JR, Hamer JE. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 1996;10(21):2696–706.
Article
CAS
PubMed
Google Scholar
Chen XL, Yang J, Peng YL. Large-scale insertional mutagenesis in Magnaporthe oryzae by Agrobacterium tumefaciens-mediated transformation. Methods Mol Biol (Clifton, NJ). 2011;722:213–24.
Article
CAS
Google Scholar
Rho H-S, Kang S, Lee Y-H. Agrobacterium tumefaciens-mediated transformation of the plant pathogenic fungus, Magnaporthe grisea. Mol Cells (Springer Science & Business Media BV). 2001;12:3.
Google Scholar
Lau GW, Hamer JE. Acropetal: a genetic locus required for conidiophore architecture and pathogenicity in the rice blast fungus. Fungal Genet Biol. 1998;24(1–2):228–39.
Article
CAS
PubMed
Google Scholar