Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P. Mesophilic crenarchaeota: Proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol. 2008;6:245–52.
Article
CAS
PubMed
Google Scholar
Delong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992;89:5685–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Schleper C, Jurgens G, Jonuscheit M. Genomic studies of uncultivated archaea. Nat Rev Microbiol. 2005;3:479–88.
Article
CAS
PubMed
Google Scholar
Matte-Tailliez O, Brochier C, Forterre P, Philippe H. Archael phylogeny based on ribosomal proteins. Mol Biol Evol. 2002;19:631–9.
Article
CAS
PubMed
Google Scholar
Spang A, Hatzenpichler R, Brochier-Armanet C, Rattei T, Tischler P, Spieck E, et al. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol. 2010;18:331–40.
Article
CAS
PubMed
Google Scholar
Petitjean C, Deschamps P, López-Garciá P, Moreira D. Rooting the domain archaea by phylogenomic analysis supports the foundation of the new kingdom Proteoarchaeota. Genome Biol Evol. 2014;7:191–204.
Article
PubMed
PubMed Central
Google Scholar
Brochier-Armanet C, Gribaldo S, Forterre P. Spotlight on the Thaumarchaeota. ISME J. 2012;6:227–30.
Article
CAS
PubMed
Google Scholar
Hallam SJ, Konstantinidis KT, Putnam N, Schleper C, Watanabe Y, Sugahara J, et al. Genomic analysis of the uncultivated marine crenarchaeote Cenarchaeum symbiosum. Proc Natl Acad Sci U S A. 2006;103:18296–301.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stieglmeier M, RJE A, Schleper C. The Prokaryotes; 2014.
Google Scholar
Lin X, Handley KM, Gilbert JA, Kostka JE. Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat. ISME J. 2015;9:2740–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oton EV, Quince C, Nicol GW, Prosser JI, Gubry-Rangin C. Phylogenetic congruence and ecological coherence in terrestrial Thaumarchaeota. ISME J. 2016;10:85–96.
Article
CAS
PubMed
Google Scholar
Kerou M, Alves RJE, Schleper C. Stieglmeier, Klingl, Alves, Rittmann, Melcher, Leisch and Schleper 2014a, 2747; 2016.
Google Scholar
Alves RJE, Minh BQ, Urich T, Von Haeseler A, Schleper C. Unifying the global phylogeny and environmental distribution of ammonia-oxidising archaea based on amoA genes. Nat Commun. 2018;9:1–17.
Article
CAS
Google Scholar
Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci. 2005;102:14683–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Treusch AH, Leininger S, Kietzin A, Schuster SC, Klenk HP, Schleper C. Novel genes for nitrite reductase and Amo-related proteins indicate a role of uncultivated mesophilic crenarchaeota in nitrogen cycling. Environ Microbiol. 2005;7:1985–95.
Article
CAS
PubMed
Google Scholar
Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, et al. Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature. 2006;442:806–9.
Article
CAS
PubMed
Google Scholar
Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, DeLong EF. Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol. 2007;9:1162–75.
Article
CAS
PubMed
Google Scholar
Adair KL, Schwartz E. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microb Ecol. 2008;56:420–6.
Article
CAS
PubMed
Google Scholar
Agogué H, Brink M, Dinasquet J, Herndl GJ. Major gradients in putatively nitrifying and non-nitrifying Archaea in the deep North Atlantic. Nature. 2008;456:788–92.
Article
PubMed
CAS
Google Scholar
Reigstad LJ, Richter A, Daims H, Urich T, Schwark L, Schleper C. Nitrification in terrestrial hot springs of Iceland and Kamchatka. FEMS Microbiol Ecol. 2008;64:167–74.
Article
CAS
PubMed
Google Scholar
Shen JP, Zhang LM, Zhu YG, Zhang JB, He JZ. Abundance and composition of ammonia-oxidizing bacteria and ammonia-oxidizing archaea communities of an alkaline sandy loam. Environ Microbiol. 2008;10:1601–11.
Article
CAS
PubMed
Google Scholar
Dang H, Luan XW, Chen R, Zhang X, Guo L, Klotz MG. Diversity, abundance and distribution of amoA-encoding archaea in deep-sea methane seep sediments of the Okhotsk Sea. FEMS Microbiol Ecol. 2010;72:370–85.
Article
CAS
PubMed
Google Scholar
Gubry-Rangin C, Nicol GW, Prosser JI. Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol Ecol. 2010;74:566–74.
Article
CAS
PubMed
Google Scholar
Mussmann M, Brito I, Pitcher A, Sinninghe Damste JS, Hatzenpichler R, Richter A, et al. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc Natl Acad Sci. 2011;108:16771–6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Zheng M, Fu HZ, Ho YS. Research trends and hotspots related to ammonia oxidation based on bibliometric analysis. Environ Sci Pollut Res. 2017;24:20409–21.
Article
CAS
Google Scholar
Könneke M, Bernhard AE, De La Torre JR, Walker CB, Waterbury JB, Stahl DA. Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature. 2005;437:543–6.
Article
PubMed
CAS
Google Scholar
Qin W, Heal KR, Ramdasi R, Kobelt JN, Martens-Habbena W, Bertagnolli AD, et al. Nitrosopumilus maritimus gen. nov., sp. nov., Nitrosopumilus cobalaminigenes sp. nov., Nitrosopumilus oxyclinae sp. nov., and Nitrosopumilus ureiphilus sp. nov., four marine ammoniaoxidizing archaea of the phylum thaumarchaeo. Int J Syst Evol Microbiol. 2017;67:5067–79.
Article
PubMed
Google Scholar
Stein LY. Insights into the physiology of ammonia-oxidizing microorganisms. Curr Opin Chem Biol. 2019;49:9–15.
Article
CAS
PubMed
Google Scholar
Tourna M, Stieglmeier M, Spang A, Könneke M, Schintlmeister A, Urich T, et al. textlessem\textgreaterNitrososphaera viennensis\textless/em\textgreater, an ammonia oxidizing archaeon from soil. Proc Natl Acad Sci. 2011;108:8420 LP – 8425.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pester M, Schleper C, Wagner M. The Thaumarchaeota: An emerging view of their phylogeny and ecophysiology. Curr Opin Chem Biol. 2011;14:300–6.
CAS
Google Scholar
Karner MB, Delong EF, Karl DM. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature. 2001;409:507–10.
Article
CAS
PubMed
Google Scholar
Ochsenreiter T, Selezi D, Quaiser A, Bonch-Osmolovskaya L, Schleper C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ Microbiol. 2003;5:787–97.
Article
CAS
PubMed
Google Scholar
Tolar BB, King GM, Hollibaugh JT. An analysis of thaumarchaeota populations from the northern Gulf of Mexico. Front Microbiol. 2013;4:72.
Article
CAS
PubMed
PubMed Central
Google Scholar
Erguder TH, Boon N, Wittebolle L, Marzorati M, Verstraete W. Environmental factors shaping the ecological niches of ammonia-oxidizing archaea. FEMS Microbiol Rev. 2009;33:855–69.
Article
CAS
PubMed
Google Scholar
Lehtovirta-Morley LE, Stoecker K, Vilcinskas A, Prosser JI, Nicol GW. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc Natl Acad Sci. 2011;108:15892–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hu A, Yang Z, Yu CP, Jiao N. Dynamics of Autotrophic Marine Planktonic Thaumarchaeota in the East China Sea. PLoS ONE. 2013;8:20–3.
Article
Google Scholar
Vissers EW, Blaga CI, Bodelier PLE, Muyzer G, Schleper C, Sinninghe Damsté JS, et al. Seasonal and vertical distribution of putative ammonia-oxidizing thaumarchaeotal communities in an oligotrophic lake. FEMS Microbiol Ecol. 2013;83:515–26.
Article
CAS
PubMed
Google Scholar
De La Torre JR, Walker CB, Ingalls AE, Könneke M, Stahl DA. Cultivation of a thermophilic ammonia oxidizing archaeon synthesizing crenarchaeol. Environ Microbiol. 2008;10:810–8.
Article
PubMed
CAS
Google Scholar
Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, et al. Archaeal nitrification in the ocean. Proc Natl Acad Sci. 2006;103:12317–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Stahl DA, de la Torre JR. Physiology and Diversity of Ammonia-Oxidizing Archaea. Annu Rev Microbiol. 2012;66:83–101.
Article
CAS
PubMed
Google Scholar
Martens-Habbena W, Berube PM, Urakawa H, De La Torre JR, Stahl DA. Ammonia oxidation kinetics determine niche separation of nitrifying Archaea and Bacteria. Nature. 2009;461:976–9.
Article
CAS
PubMed
Google Scholar
Walker CB, de la Torre JR, Klotz MG, Urakawa H, Pinel N, Arp DJ, et al. Nitrosopumilus maritimus genome reveals unique mechanisms for nitrification and autotrophy in globally distributed marine crenarchaea. Proc Natl Acad Sci. 2010;107:8818–23.
Article
CAS
PubMed
PubMed Central
Google Scholar
Konneke M, Schubert DM, Brown PC, Hugler M, Standfest S, Schwander T, et al. Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci. 2014;111:8239–44.
Article
PubMed
CAS
PubMed Central
Google Scholar
Satinsky BM, Crump BC, Smith CB, Sharma S, Zielinski BL, Doherty M, et al. Microspatial gene expression patterns in the Amazon River Plume. Proc Natl Acad Sci. 2014;111:11085–90.
Article
CAS
PubMed
PubMed Central
Google Scholar
Satinsky BM, Smith CB, Sharma S, Ward ND, Krusche AV, Richey JE, et al. Patterns of Bacterial and Archaeal Gene Expression through the Lower Amazon River. Front Mar Sci. 2017;4:1–15.
Article
Google Scholar
Richey JE, Hedges JI, Devol AH, Quay PD, Victoria R, Martinelli L, et al. Biogeochemistry of carbon in the Amazon River. Limnol Oceanogr. 1990;35:352–71.
Article
CAS
Google Scholar
Dai A, Trenberth KE. Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations. J Hydrometeorol. 2002;3:660–87.
Article
Google Scholar
Kang Y, Pan D, Bai Y, He X, Chen X, Chen CTA, et al. Areas of the global major river plumes. Acta Oceanologica Sinica. 2013;32:79–88.
Article
Google Scholar
Horner-Devine AR, Hetland RD, MacDonald DG. Mixing and Transport in Coastal River Plumes. Annu Rev Fluid Mech. 2015;47:569–94.
Article
Google Scholar
Lentz SJ. Seasonal variations in the horizontal structure of the Amazon plume inferred from historical hydrographic data. J Geophys Res. 1995;100:2391–400.
Article
Google Scholar
Lentz SJ. The Amazon River plume during AMASSEDS: subtidal current variability and the importance of wind forcing. J Geophys Res. 1995;100:2377–90.
Article
Google Scholar
Körtzinger A. A significant CO 2 sink in the tropical Atlantic Ocean associated with the Amazon River plume. Geophys Res Lett. 2003;30:2–5.
Article
CAS
Google Scholar
Cooley SR, Coles VJ, Subramaniam A, Yager PL. Seasonal variations in the Amazon plume-related atmospheric carbon sink. Global Biogeochem Cycles. 2007;21:1–15.
Article
CAS
Google Scholar
Moura RL, Amado-Filho GM, Moraes FC, Brasileiro PS, Salomon PS, Mahiques MM, et al. An extensive reef system at the Amazon River mouth - Supplementary Material. Sci Adv. 2016;2:e1501252.
Article
PubMed
PubMed Central
CAS
Google Scholar
Tatusov RL. A Genomic Perspective on Protein Families. Science. 1997;278:631–7.
Article
CAS
PubMed
Google Scholar
Massana R, Delong EF, Pedrós-Alió C. A few cosmopolitan phylotypes dominate planktonic archaeal assemblages in widely different oceanic provinces. Appl Environ Microbiol. 2000;66:1777–87.
Article
CAS
PubMed
PubMed Central
Google Scholar
Silva BSO, Coutinho FH, Gregoracci GB, Leomil L, de Oliveira LS, Fróes A, et al. Virioplankton assemblage structure in the lower river and ocean continuum of the Amazon. mSphere. 2017;2:e00366–17.
PubMed
PubMed Central
Google Scholar
Mayorga E, Aufdenkampe AK, Masiello CA, Krusche AV, Hedges JI, Quay PD, et al. Young organic matter as a source of carbon dioxide outgassing from Amazonian rivers. Nature. 2005;436:538–41.
Article
CAS
PubMed
Google Scholar
Sawakuchi HO, Neu V, Ward ND, de LC BM, Valerio AM, Gagne-Maynard W, et al. Carbon Dioxide Emissions along the Lower Amazon River. Front Mar Sci. 2017;4:76.
Article
Google Scholar
Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML. A review of allochthonous organic matter dynamics and metabolism in streams. J North Am Benthol Soc. 2010;29:118–46.
Article
Google Scholar
Gubry-Rangin C, Hai B, Quince C, Engel M, Thomson BC, James P, et al. Niche specialization of terrestrial archaeal ammonia oxidizers. Proc Natl Acad Sci. 2011;108:21206–11.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mosier AC, Francis CA. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol. 2008;10:3002–16.
Article
CAS
PubMed
Google Scholar
Restrepo-Ortiz CX, Auguet JC, Casamayor EO. Targeting spatiotemporal dynamics of planktonic SAGMGC-1 and segregation of ammonia-oxidizing thaumarchaeota ecotypes by newly designed primers and quantitative polymerase chain reaction. Environ Microbiol. 2014;16:689–700.
Article
PubMed
CAS
Google Scholar
Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson PM, et al. Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. PLoS Biol. 2006;4:520–36.
Article
CAS
Google Scholar
Beman JM, Popp BN, Francis CA. Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J. 2008;2:429–41.
Article
CAS
PubMed
Google Scholar
Santoro AE, Casciotti KL. Enrichment and characterization of ammonia-oxidizing archaea from the open ocean: Phylogeny, physiology and stable isotope fractionation. ISME J. 2011;5:1796–808.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ. Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol. 2013;15:1647–58.
Article
CAS
PubMed
PubMed Central
Google Scholar
Luo H, Tolar BB, Swan BK, Zhang CL, Stepanauskas R, Ann Moran M, et al. Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME J. 2014;8:732–6.
Article
CAS
PubMed
Google Scholar
Tolar BB, Ross MJ, Wallsgrove NJ, Liu Q, Aluwihare LI, Popp BN, et al. Contribution of ammonia oxidation to chemoautotrophy in Antarctic coastal waters. ISME J. 2016;10:2605–19.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richter M, Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci. 2009;106:19126–31.
Article
CAS
PubMed
PubMed Central
Google Scholar
Chan JZM, Halachev MR, Loman NJ, Constantinidou C, Pallen MJ. Defining bacterial species in the genomic era: Insights from the genus Acinetobacter. BMC Microbiol. 2012;12:1.
Article
CAS
Google Scholar
Goris J, Konstantinidis KT, Klappenbach JA, Coenye T, Vandamme P, Tiedje JM. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.
Article
CAS
PubMed
Google Scholar
Moore WEC, Stackebrandt E, Kandler O, Colwell RR, Krichevsky MI, Truper HG, et al. Report of the Ad Hoc Committee on Reconciliation of Approaches to Bacterial Systematics. Int J Syst Evol Microbiol. 1987;37:463–4.
Article
Google Scholar
Jung MY, Islam MA, Gwak JH, Kim JG, Rhee SK. Nitrosarchaeum koreense gen. Nov., sp. nov., an aerobic and mesophilic, ammonia-oxidizing archaeon member of the phylum thaumarchaeota isolated from agricultural soil. Int J Syst Evol Microbiol. 2018;68:3084–95.
Article
CAS
PubMed
Google Scholar
Doxey AC, Kurtz DA, Lynch MDJ, Sauder LA, Neufeld JD. Aquatic metagenomes implicate Thaumarchaeota in global cobalamin production. ISME J. 2015;9:461–71.
Article
CAS
PubMed
Google Scholar
Otte J, Mall A, Schubert DM. K�nneke M, Berg IA. Malonic semialdehyde reductase from the archaeon Nitrosopumilus maritimus is involved in the autotrophic 3-hydroxypropionate/4- hydroxybutyrate cycle. Appl Environ Microbiol. 2015;81:1700–7.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hansman RL, Griffin S, Watson JT, Druffel ERM, Ingalls AE, Pearson A, et al. The radiocarbon signature of microorganisms in the mesopelagic ocean. Proc Natl Acad Sci. 2009;106:6513–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Richey JE, Melack JM, Aufdenkampe AK, Ballester VM, Hess LL. Outgassing from Amazonia rivers and wetlands as a large tropical source of atmospheric CO2. Nature. 2002;416:617–20.
Article
CAS
PubMed
Google Scholar
Jia Z, Conrad R. Bacteria rather than Archaea dominate microbial ammonia oxidation in an agricultural soil. Environ Microbiol. 2009;11:1658–71.
Article
CAS
PubMed
Google Scholar
Kobayashi S, Hira D, Yoshida K, Toyofuku M, Shida Y, Ogasawara W, et al. Nitric Oxide Production from Nitrite Reduction and Hydroxylamine Oxidation by Copper-containing Dissimilatory Nitrite Reductase (NirK) from the Aerobic Ammonia-oxidizing Archaeon, Nitrososphaera viennensis. Microbes Environ. 2018;33:428–34.
Article
PubMed
PubMed Central
Google Scholar
Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the ammonia-oxidizing candidatus nitrososphaera gargensis: Insights into metabolic versatility and environmental adaptations. Environ Microbiol. 2012;14:3122–45.
Article
CAS
PubMed
Google Scholar
Kerou M, Offre P, Valledor L, Abby SS, Melcher M, Nagler M, et al. Proteomics and comparative genomics of Nitrososphaera viennensis reveal the core genome and adaptations of archaeal ammonia oxidizers. Proc Natl Acad Sci. 2016;113:E7937–46.
Article
CAS
PubMed
PubMed Central
Google Scholar
Purwantini E, Mukhopadhyay B. Conversion of NO2 to NO by reduced coenzyme F420 protects mycobacteria from nitrosative damage. Proc Natl Acad Sci. 2009;106:6333–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bruce T, Meirelles PM, Garcia G, Paranhos R, Rezende CE, de Moura RL, et al. Abrolhos bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data. PLoS ONE. 2012;7:e36687.
Article
CAS
PubMed
PubMed Central
Google Scholar
Thurber RV, Haynes M, Breitbart M, Wegley L, Rohwer F. Laboratory procedures to generate viral metagenomes. Nat Protoc. 2009;4:470–83.
Article
CAS
PubMed
Google Scholar
Peng Y, Leung HCM, Yiu SM, Chin FYL. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics. 2012;28:1420–8.
Article
CAS
PubMed
Google Scholar
Wrighton KC, Thomas BC, Sharon I, Miller CS, Castelle CJ, VerBerkmoes NC, et al. Fermentation, hydrogen, and sulfur metabolism in multiple uncultivated bacterial phyla. Science. 2012;337:1661–5.
Article
CAS
PubMed
Google Scholar
Raveh-Sadka T, Thomas BC, Singh A, Firek B, Brooks B, Castelle CJ, et al. Gut bacteria are rarely shared by co-hospitalized premature infants, regardless of necrotizing enterocolitis development. eLife. 2015;2015:1–25.
Google Scholar
Probst AJ, Castelle CJ, Singh A, Brown CT, Anantharaman K, Sharon I, et al. Genomic resolution of a cold subsurface aquifer community provides metabolic insights for novel microbes adapted to high CO2concentrations. Environ Microbiol. 2017;19:459–74.
Article
CAS
PubMed
Google Scholar
Chen IMA, Markowitz VM, Chu K, Palaniappan K, Szeto E, Pillay M, et al. IMG/M: Integrated genome and metagenome comparative data analysis system. Nucleic Acids Res. 2017;45:D507–16.
Article
CAS
PubMed
Google Scholar
Huntemann M, Ivanova NN, Mavromatis K, Tripp HJ, Paez-Espino D, Palaniappan K, et al. The standard operating procedure of the DOE-JGI Microbial Genome Annotation Pipeline (MGAP v.4). Stand Genomic Sci. 2015;10:86.
Article
PubMed
PubMed Central
CAS
Google Scholar
Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M. KAAS: An automatic genome annotation and pathway reconstruction server. Nucleic Acids Res. 2007;35(SUPPL.2):182–5.
Article
Google Scholar
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:490–5.
Article
CAS
Google Scholar
Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.
Article
PubMed
CAS
Google Scholar
Development Core Team R. R: A Language and Environment for Statistical Computing. 2011.
Google Scholar
Lebedeva EV, Hatzenpichler R, Pelletier E, Schuster N, Hauzmayer S, Bulaev A, et al. Enrichment and genome sequence of the group I.1a ammonia-oxidizing archaeon “Ca. Nitrosotenuis uzonensis” representing a clade globally distributed in thermal habitats. PLoS ONE. 2013;8:1–12.
Article
CAS
Google Scholar
Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.
Article
CAS
PubMed
PubMed Central
Google Scholar
Guindon S, Delsuc F, Dufayard J-F, Gascuel O. Estimating Maximum Likelihood Phylogenies with PhyML. In: Posada D, editor. Bioinformatics for DNA Sequence Analysis. Totowa: Humana Press; 2009. p. 113–37.
Chapter
Google Scholar
Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 2015;43:6761–71.
Article
CAS
PubMed
PubMed Central
Google Scholar