Zhou Z, Fang L, Meng Q, Li SL, Chai ST, Liu SJ, et al. Assessment of ruminal bacterial and archaeal community structure in yak (Bos grunniens). Front Microbiol. 2017;8:179. https://doi.org/10.3389/fmicb.2017.00179.
Article
PubMed
PubMed Central
Google Scholar
Liu C, Wu H, Liu SJ, Chai ST, Meng QX, Zhou ZM. Dynamic alterations in yak rumen bacteria community and metabolome characteristics in response to feed type. Front Microbiol. 2019;10:1116. https://doi.org/10.3389/fmicb.2019.01116.
Article
PubMed
PubMed Central
Google Scholar
Jami E, Israel A, Kotser A, Mizrahi I. Exploring the bovine rumen bacterial community from birth to adulthood. Isme J. 2013;7(6):1069–79. https://doi.org/10.1038/ismej.2013.2.
Article
PubMed
PubMed Central
Google Scholar
Ma L, Xu SX, Liu HJ, Xu TW, Hu LY, Zhao N, et al. Yak rumen microbial diversity at different forage growth stages of an alpine meadow on the Qinghai-Tibet plateau. PeerJ. 2019;7:e7645. https://doi.org/10.7287/peerj.7645v0.2/reviews/1.
Article
PubMed
PubMed Central
Google Scholar
Martin R, Nauta AJ, Amor KB, Knippels LMJ, Knol J, Garssen J. Early life: gut microbiota and immune development in infancy. Benef Microbes. 2010;1(4):367–82. https://doi.org/10.3920/BM2010.0027.
Article
CAS
PubMed
Google Scholar
Tlaskalova-Hogenova H, Stepankova R, Kozakova H, Hudcovic T, Vannucci L, Tuckova L, et al. The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: contribution of germ-free and gnotobiotic animal models of human diseases. Cell Mol Immunol. 2011;8(2):110–20. https://doi.org/10.1038/cmi.2010.67.
Article
CAS
PubMed
PubMed Central
Google Scholar
Shabat SKB, Sasson G, Doronfaigenboim A, Durman T, Yaacoby S, Miller MEB, et al. Specific microbiome-dependent mechanisms underlie the energy harvest efficiency of ruminants. ISME J. 2016;10(12):2958–72. https://doi.org/10.1038/ismej.2016.62.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sommer F, Backhed F. The gut microbiota-masters of host development and physiology. Nat Rev Microbiol. 2013;11(4):227–38. https://doi.org/10.1038/nrmicro2974.
Article
CAS
PubMed
Google Scholar
Zhang ZG, Xu DM, Wang L, Hao JJ, Wang JF, Zhou X, et al. Convergent evolution of rumen microbiomes in high-altitude mammals. Curr Biol. 2016;26(14):1873–9. https://doi.org/10.1016/j.cub.2016.05.012.
Article
CAS
PubMed
Google Scholar
Fan QS, Wanapat M, Hou FJ. Mineral nutritional status of yaks (Bos Grunniens) grazing on the Qinghai-Tibetan plateau. Animals. 2019;9(7):468. https://doi.org/10.3390/ani9070468.
Article
PubMed Central
Google Scholar
Li H, Zhou R, Zhu JX, Huang XD, Qu JP. Environmental filtering increases with elevation for the assembly of gut microbiota in wild pikas. Microb Biotechnol. 2019;12(5):976–92. https://doi.org/10.1111/1751-7915.13450.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang LZ, Wang ZS, Xue B, Wu D, Peng QH. Comparison of rumen archaeal diversity in adult and elderly yaks (Bos grunniens) using 16S rRNA gene high-throughput sequencing. J Integr Agr. 2017;16(5):1130–7. https://doi.org/10.1016/S2095-3119(16)61454-5.
Hu R, Zou H, Wang Z, Cao BH, Peng QH, Jing XP, et al. Nutritional interventions improved rumen functions and promoted compensatory growth of growth-retarded yaks as revealed by integrated transcripts and microbiome analyses. Front Microbiol. 2019;10:318. https://doi.org/10.3389/fmicb.2019.00318.
Article
PubMed
PubMed Central
Google Scholar
Shi FY, Guo N, Degen AA, Salem AZM, Lopez S, Kholif AM. Effects of level of feed intake and season on digestibility of dietary components, efficiency of microbial protein synthesis, rumen fermentation and ruminal microbiota in yaks. Anim Feed Sci Technol. 2010;259:114359. https://doi.org/10.1016/j.anifeedsci.2019.114359.
Article
CAS
Google Scholar
Li H, Qu JP, Li TT, Wirth SH, Zhang YM, Zhao XQ, et al. Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas. Appl Microbiol Biotechnol. 2018;102(15):6739–51. https://doi.org/10.1007/s00253-018-9097-z.
Article
CAS
PubMed
Google Scholar
Tap J, Furet JP, Bensaada M, Philippe C, Roth H, Rabot S, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17(12):4954–64. https://doi.org/10.1111/1462-2920.13006.
Article
CAS
PubMed
Google Scholar
Clarke SF, Murphy EF, Osullivan O, Lucey AJ, Humphreys M, Hogan A, et al. Exercise and associated dietary extremes impact on gut microbial diversity. Gut. 2014;63(12):1913–20. https://doi.org/10.1136/gutjnl-2013-306541.
Article
CAS
PubMed
Google Scholar
Wu Y, Yao Y, Dong M, Xia T, Li D, Xie M, et al. Characterisation of the gut microbial community of rhesus macaques in high-altitude environments. BMC Microbiol. 2020;20(1):68. https://doi.org/10.1186/s12866-020-01747-1.
Article
PubMed
PubMed Central
Google Scholar
Cui XX, Wang ZF, Yan TH, Chang SH, Wang H, Hou FJ. Rumen bacterial diversity of Tibetan sheep (Ovis aries) associated with different forage types on the Qinghai-Tibetan plateau. Can J Microbiol. 2019;65(12):859–69. https://doi.org/10.1139/cjm-2019-0154.
Article
CAS
PubMed
Google Scholar
Lei Y, Zhang K, Guo M, Li GW, Li C, Li BB, et al. Exploring the spatial-temporal microbiota of compound stomachs in a pre-weaned goat model. Front Microbiol. 2018;9:1846. https://doi.org/10.3389/fmicb.2018.01846.
Article
PubMed
PubMed Central
Google Scholar
Bi YL, Zeng SQ, Zhang R, Diao QY, Tu Y. Effects of dietary energy levels on rumen bacterial community composition in Holstein heifers under the same forage to concentrate ratio condition. BMC Microbiol. 2018;18:69. https://doi.org/10.1186/s12866-018-1213-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Huang J, Li Y, Luo Y. Bacterial community in the rumen of Tibetan sheep and Gansu alpine fine-wool sheep grazing on the Qinghai-Tibetan plateau. China J Gen and Appl Microbiol. 2017;63:122–30. https://doi.org/10.2323/jgam.2016.08.003.
Article
CAS
Google Scholar
Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31. https://doi.org/10.1038/nature05414.
Article
PubMed
Google Scholar
Thomas F, Hehemann JH, Rebuffet E, Czjzek M, Michel G. Environmental and gut bacteroidetes: the food connection. Front Microbiol. 2011;2:93. https://doi.org/10.3389/fmicb.2011.00093.
Article
PubMed
PubMed Central
Google Scholar
Chevalier C, Stojanovic O, Colin DJ, Suarezzamorano N, Tarallo V, Veyratdurebex C, et al. Gut microbiota orchestrates energy homeostasis during cold. Cell. 2015;163(6):1360–74. https://doi.org/10.1016/j.cell.2015.11.004.
Article
CAS
PubMed
Google Scholar
Biddle A, Stewart L, Blanchard J, Leschine S. Untanglingthegenetic basis of fibrolytic specialization by Lachnospiraceae and Ruminococcaceae in diverse gut communities. Diversity. 2013;5(3):627–40. https://doi.org/10.3390/d5030627.
Article
Google Scholar
Bergman EN. Energy contributions of volatile fatty-acids from the gastrointestinal-tract in various species. Physiol Rev. 1990;70(2):567–90. https://doi.org/10.1152/physrev.1990.70.2.567.
Article
CAS
PubMed
Google Scholar
Amato KR, Leigh SR, Kent A, Mackie RI, Yeoman CJ, Stumpf RM, et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb Ecol. 2015;69(2):434–43. https://doi.org/10.1007/s00248-014-0554-7.
Article
CAS
PubMed
Google Scholar
Perea K, Perz K, Olivo SK, Williams AF, Lachman MM, Ishaq SL, et al. Feed efficiency phenotypes in lambs involve changes in ruminal, colonic, and small-intestine-located microbiota. J Anim Sci. 2017;95(6):2585–92. https://doi.org/10.2527/jas.2016.1222.
Article
CAS
PubMed
Google Scholar
Stewart RD, Auffret MD, Warr A, Wiser AH, Press MO, Langford KW, et al. Assembly of 913 microbial genomes from metagenomic sequencing of the cow rumen. Nat Commun. 2018;9(1):870. https://doi.org/10.1038/s41467-018-03317-6.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li L, Zhao X. Comparative analyses of fecal microbiota in Tibetan and Chinese Han living at low or high altitude by barcoded 454 pyrosequencing. Sci Rep. 2015;5(1):14682. https://doi.org/10.1038/srep14682.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li H, Li T, Berasategui A, Rui JP, Zhang X, Li CN, et al. Gut region influences the diversity and interactions of bacterial communities in pikas (Ochotona curzoniae and Ochotona daurica). FEMS Microbiol Ecol. 2017;93(12):fix149. https://doi.org/10.1093/femsec/fix149.
Article
CAS
Google Scholar
Dai X, Tian Y, Li J, Su XY, Wang XW, Zhao SG, et al. Metatranscriptomic analyses of plant cell wall polysaccharide degradation by microorganisms in cow rumen. Appl Environ Microbiol. 2014;81(4):1375–86. https://doi.org/10.1128/AEM.03682-14.
Article
CAS
Google Scholar
Escobar JS, Klotz B, Valdes BE, Agudelo GM. The gut microbiota of Colombians differs from that of Americans, Europeans and Asians. BMC Microbiol. 2014;14(1):311. https://doi.org/10.1186/s12866-014-0311-6.
Article
PubMed
PubMed Central
Google Scholar
Gerritsen J. The genus Romboutsia: Genomic and Functional Characterization of Novel Bacteria Dedicated to Life in the Intestinal Tract. Ph.D. thesis. Wageningen: Wageningen University; 2015.
Google Scholar
Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao JY, Petrosino JF, et al. Gut microbiome associates with lifetime cardiovascular disease risk profile among Bogalusa heart study participants. Circ Res. 2016;119(8):956–64. https://doi.org/10.1161/CIRCRESAHA.116.309219.
Article
CAS
PubMed
PubMed Central
Google Scholar
Downes J, Dewhirst FE, Tanner ACR, Wade WG. Description of Alloprevotella rava gen. Nov., sp. nov., isolated from the human oral cavity, and reclassification of Prevotella tannerae Moore et al. 1994 as Alloprevotella tannerae gen. Nov., comb. nov. Int J Syst Evol Microbiol. 2013;63(4):1214–8. https://doi.org/10.1099/ijs.0.041376-0.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freier TA, Beitz DC, Li L, Hartman PA. Characterization of Eubacterium coprostanoligenes sp. nov., a cholesterol-reducing anaerobe. Int J Syst Bacteriol. 1994;44(1):137–42. https://doi.org/10.1099/00207713-44-1-137.
Article
CAS
PubMed
Google Scholar
Zhu L, Wu Q, Dai J, Zhang SN, Wei FW. Evidence of cellulose metabolism by the giant panda gut microbiome. PNAS. 2011;108(43):17714–9. https://doi.org/10.1073/pnas.1017956108.
Article
PubMed
PubMed Central
Google Scholar
Evans NJ, Brown JM, Demirkan I, Murray RD, Vink WD, Blowey R, et al. Three unique groups of spirochetes isolated from digital dermatitis lesions in UK cattle. Vet Microbiol. 2008;130(1):141–50. https://doi.org/10.1016/j.vetmic.2007.12.019.
Article
CAS
PubMed
Google Scholar
Klevenhusen F, Petri RM, Kleefisch MT, Khiaosa-Ard R, Metzler-Zebeli BU, Zebeli Q. Changes in fibre-adherent and fluid-associated microbial communities and fermentation profiles in the rumen of cattle fed diets differing in hay quality and concentrate amount. FEMS Microbiol Ecol. 2017;93(9):fix100. https://doi.org/10.1093/femsec/fix100.
Article
CAS
Google Scholar
Nordhoff M, Moter A, Schrank K, Wieler LH. High prevalence of treponemes in bovine digital dermatitis-a molecular epidemiology. Vet Microbiol. 2008;131(3):293–300. https://doi.org/10.1016/j.vetmic.2008.04.019.
Article
CAS
PubMed
Google Scholar
Chaffanel F, Charron-Bourgoin F, Soligot C, Kebouchi M, Bertin S, Payot S, et al. Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl Microbiol Biotechnol. 2018;102(6):2851–65. https://doi.org/10.1007/s00253-018-8794-y.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jorth P, Turner KH, Gumus P, Nizam N, Buduneli N, Whiteley M. Metatranscriptomics of the human oral microbiome during health and disease. MBio. 2014;5(2):e01012–4. https://doi.org/10.1128/mBio.01012-14.
Article
PubMed
PubMed Central
Google Scholar
Mahowald MA, Rey FE, Seedorf H, Turnbaugh PJ, Fulton RS, Wollam A, et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. PNAS. 2009;106(14):5859–64. https://doi.org/10.1073/pnas.0901529106.
Article
PubMed
PubMed Central
Google Scholar
Rey FE, Faith JJ, Bain J, Muehlbauer MJ, Stevens R, Newgard CB, et al. Dissecting the in vivo metabolic potential of two human gut acetogens. J Biol Chem. 2010;285(29):22082–90. https://doi.org/10.1074/jbc.M110.117713.
Article
CAS
PubMed
PubMed Central
Google Scholar
Cui ZH, Wu SR, Liu SJ, Sun L, Feng YZ, Cao YC, et al. From maternal grazing to barn feeding during pre-weaning period: altered gastrointestinal microbiota contributes to change the development and function of the rumen and intestine of yak calves. Front Microbio. 2020;11:485. https://doi.org/10.3389/fmicb.2020.00485.
Article
Google Scholar
Naeem A, Drackley JK, Stamey J, Loor JJ. Role of metabolic and cellular proliferation genes in ruminal development in response to enhanced plane of nutrition in neonatal Holstein calves. J Dairy Sci. 2012;95(4):1807–20. https://doi.org/10.3168/jds.2011-4709.
Article
CAS
PubMed
Google Scholar
Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud D, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–40. https://doi.org/10.1194/jlr.R036012.
Article
CAS
Google Scholar
Kong XF, Zhou XL, Lian GQ, Blachier F, Liu G, Tan B, et al. Dietary supplementation with chitooligosaccharides alters gut microbiota and modifies intestinal luminal metabolites in weaned Huanjiang mini-piglets. Livest Sci. 2014;160:97–101. https://doi.org/10.1016/j.livsci.2013.11.023.
Article
Google Scholar
Fuchs G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu Rev Microbiol. 2011;65(1):631–58. https://doi.org/10.1146/annurev-micro-090110-102801.
Article
CAS
PubMed
Google Scholar
Hamana K, Itoh T, Sakamoto M, Hayashi H. Covalently linked polyamines in the cell wall peptidoglycan of the anaerobes belonging to the order Selenomonadales. J Gen and Appl Microbiol. 2012;58(4):339–47. https://doi.org/10.2323/jgam.58.339.
Article
CAS
Google Scholar
AOAC. Official methods of analysis (15th ed). Washington, D.C.: Association of Official Analytical Chemists; 1990.
Google Scholar
Van Soest PJ, Robertson JB, Lewis BA. Methods for dietary fiber, neutral detergent fiber and nonstarch polysaccharides in relation to animal nutrition. J Dairy Sci. 1991;74(10):3583–97. https://doi.org/10.3168/jds.S0022-030291)78551-2.
Fan QS, Wanapat M, Hou FJ. Chemical composition of milk and rumen microbiome diversity of yak, impacting by herbage grown at different phenological periods on the Qinghai-Tibet Plateau. Animals. 2020;10(6):1030. https://doi.org/10.3390/ani10061030.
Erwin ES, Marco GJ, Emery EM. Volatile fatty acid analyses of blood and rumen fluid by gas chromatography. J Dairy Sci. 1961;44(9):1768–71. https://doi.org/10.3168/jds.S0022-0302(61)89956-6.
Broderick GA, Kang JH. Automated simultaneous determination of ammonia and total amino acids in ruminal fluid and in vitro medial. J Dairy Sci 1980;63(1):64–75. https://doi.org/10.3168/jds.S0022-0302(80)82888-8.
Dennis KL, Wang YW, Blatner NR, Wang SY, Saadalla A, Trudeau E, et al. Adenomatous polyps are driven by microbe-instigated focal inflammation and are controlled by IL-10-producing T cells. Cancer Res. 2013;73(19):5905–13. https://doi.org/10.1158/0008-5472.CAN-13-1511.
Article
CAS
PubMed
PubMed Central
Google Scholar
Magoc T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63. https://doi.org/10.1093/bioinformatics/btr507.
Article
CAS
PubMed
PubMed Central
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6. https://doi.org/10.1038/nmeth.f.303.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–8. https://doi.org/10.1038/nmeth.2604.
Article
CAS
PubMed
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microb. 2007;73(16):5261–7. https://doi.org/10.1128/AEM.00062-07.
Article
CAS
Google Scholar
Lozupone C, Knight R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microb. 2005;71(12):8228–35. https://doi.org/10.1128/AEM.71.12.8228-8235.2005.
Article
CAS
Google Scholar
Pan XH, Xue FG, Nan XM, Tang ZW, Wang K, Beckers Y, et al. Illumina sequencing approach to characterize thiamine metabolism related bacteria and the impacts of thiamine supplementation on ruminal microbiota in dairy cows fed high-grain diets. Front Microbiol. 2017;8:1818. https://doi.org/10.1371/journal.pone.0198225.
Article
CAS
PubMed
PubMed Central
Google Scholar
Wang WM, Li C, Li FD, Wang XJ, Zhang XX, Liu T, et al. Effects of early feeding on the host rumen transcriptome and bacterial diversity in lambs. Sci Rep. 2016;6(1):32479. https://doi.org/10.1038/srep32479.
Article
CAS
PubMed
PubMed Central
Google Scholar
Minoru K, Susumu G, Yoko S, Furumichi M, Tanabe M. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 2012;40:109–14. https://doi.org/10.1093/nar/gkr988.
Article
CAS
Google Scholar