Bagnall NM, Vig S, Trivedi P. Surgical-site infection. Surgery (Oxford). 2009;27(10):426–30.
Article
Google Scholar
Emori TG, Gaynes RP. An overview of nosocomial infections, including the role of the microbiology laboratory. Clin Microbiol Rev. 1993;6(4):428–42.
Article
CAS
PubMed
PubMed Central
Google Scholar
Smyth ET, McIlvenny G, Enstone JE, et al. Four country healthcare associated infection prevalence survey 2006: overview of the results. J Hosp Infect. 2008;69(3):230–48.
Article
CAS
PubMed
Google Scholar
Reichman DE, Greenberg JA. Reducing surgical site infections: a review. Rev Obstet Gynecol. 2009;2(4):212–21.
PubMed
PubMed Central
Google Scholar
Coello R, Charlett A, Wilson J, Ward V, Pearson A, Borriello P. Adverse impact of surgical site infections in English hospitals. J Hosp Infect. 2005;60(2):93–103.
Article
CAS
PubMed
Google Scholar
Triantafyllopoulos G, Stundner O, Memtsoudis S, Poultsides LA. Patient, surgery, and hospital related risk factors for surgical site infections following Total hip Arthroplasty. ScientificWorldJournal. 2015;2015:979560.
Article
PubMed
PubMed Central
Google Scholar
Broex ECJ, Van Asselt ADI, Bruggeman CA, Van Tiel FH. Surgical site infections: how high are the costs? J Hosp Infect. 2009;72(3):193–201.
Article
CAS
PubMed
Google Scholar
Thomas TA. WHO guidelines to prevent surgical site infections (for low – and middle – income countries). Curr Med Issues. 2017;15:59–60.
Article
Google Scholar
Bai FY. Association of genotypes with infection types and antifungal susceptibilities in Candida albicans as revealed by recent molecular typing strategies. Mycology. 2014;5(1):1–9.
Article
PubMed
CAS
Google Scholar
Jarvis WR. Epidemiology of nosocomial fungal infections, with emphasis on Candida species. Clin Infect Dis. 1995;20(6):1526–30.
Article
CAS
PubMed
Google Scholar
Azevedo MM, Teixeira-Santos R, Silva AP, et al. The effect of antibacterial and non-antibacterial compounds alone or associated with antifugals upon fungi. Front Microbiol. 2015;6:669.
Article
PubMed
PubMed Central
Google Scholar
Ostrosky-Zeichner L, Rex JH, Pappas PG, Hamill RJ, Larsen RA, Horowitz HW, et al. Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother. 2003;47(10):3149–54.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arikan S, Ostrosky-Zeichner L, Lozano-Chiu M, Paetznick V, Gordon D, Wallace T, et al. In vitro activity of nystatin compared with those of liposomal nystatin, amphotericin B, and fluconazole against clinical Candida isolates. J Clin Microbiol. 2002;40(4):1406–12.
Article
CAS
PubMed
PubMed Central
Google Scholar
Saag MS, Dismukes WE. Azole antifungal agents: emphasis on new triazoles. Antimicrob Agents Chemother. 1988;32(1):1–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Mohamed SA, Al-Ahmadey ZZ. Biofilm formation and antifungal susceptibility of Candida isolates from various clinical specimens. Br Microbiol Res J. 2013;3(4):590–601.
Article
Google Scholar
Chen A, Sobel JD. Emerging azole antifungals. Expert Opin. Emerg. Drugs. 2005;10(1):21–33.
Meis J, Petrou M, Bille J, Ellis D, Gibbs D. A global evaluation of the susceptibility of Candida species to fluconazole by disk diffusion. Diagn Microbiol Infect Dis. 2000;162(13):1907–8.
Google Scholar
Enwuru CA, Ogunledun A, Idika N, Enwuru NV, Ogbonna E, Aniedobe M, Adeiga A. Fluconazole resistant opportunistic oro-pharyngeal candida and non-candida yeast-like isolates from HIV infected patients attending ARV clinics in Lagos, Nigeria. Afr Health Sci. 2008;8(3):142–8.
CAS
PubMed
PubMed Central
Google Scholar
Kanafani ZR, Perfect JR. Resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis. 2008;46:120–8.
Article
PubMed
Google Scholar
Albertson GD, Niimi M, Cannon RD, Jenkinson HF. Multiple efflux mechanisms are involved in Candida albicans fluconazole resistance. Antimicrob Agents Chemother. 1996;40:2835–41.
Article
CAS
PubMed
PubMed Central
Google Scholar
Sanglard D, Ischer F, Monod M, Bille J. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology. 1997;143:405–16.
Article
CAS
PubMed
Google Scholar
Loffler J, Kelly SL, Hebart H, Schumacher U, Lass-Florl C, Einsele H. Molecular analysis of cyp51 from fluconazole-resistant Candida albicans strains. FEMS Microbiol Lett. 1997;151:263–8.
Article
CAS
PubMed
Google Scholar
Kelly SL, Lamb DC, Kelly DE, et al. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett. 1997;400:80–2.
Article
CAS
PubMed
Google Scholar
Chaffin WL. Candida albicans Cell Wall proteins. Microbiol Mol Biol Rev. 2008;72(3):495–544.
Article
CAS
PubMed
PubMed Central
Google Scholar
Nidhi P, Munesh KG, Ragini T. Extracellular hydrolytic enzyme activities of the different Candida spp. isolated from the blood of the intensive care unit-admitted patients. J Lab Physicians. 2018;10(4):392–6.
Article
Google Scholar
Barrett-Bee KE, Hayes Y, Wilson RG, Ryley JF. A comparison of phospholipase activity, cellular adherence and pathogenicity of yeasts. Microbiology. 1985;131(5):1217–21.
Article
CAS
Google Scholar
Cassone A, Bernardis FD, Mondello F, Ceddia T, Agatensi L. Evidence for a correlation between proteinase secretion and vulvovaginal candidosis. J Infect Dis. 1987;156(5):777–83.
Article
CAS
PubMed
Google Scholar
Rüchel R, De Bernardis F, Ray TL, Sullivan PA, Cole GT. Candida acid proteinases. J Med Vet Mycol. 1992;30(Suppl 1):123–32.
Article
PubMed
Google Scholar
Jeffery-Smith A, Taori SK, Schelenz S, Jeffery K, Johnson EM, Borman A, Manuel R, Brown CS. Candida auris: a review of the literature. Clin Microbiol Rev. 2018;1:31(1).
Google Scholar
Sachin CD, Ruchi K, Santosh S. In vitro evaluation of proteinase, phospholipase and haemolysin activities of Candida species isolated from clinical specimens. Int J Med Biomed Res. 2013;1:153–7.
Article
Google Scholar
Kumar CPG, Kumar SSJ, Menon T. Phospholipase and proteinase activities of clinical isolates of Candida from immunocompromised patients. Mycopathologia. 2006;161(4):213–8.
Article
CAS
PubMed
Google Scholar
Webster J, Osborne S. Preoperative bathing or showering with skin antiseptics to prevent surgical site infection. Cochrane Database Syst Rev. 2012;9:CD004985.
Google Scholar
Lewis SS, Moehring RW, Chen LF, Sexton DJ, Anderson DJ. Assessing the relative burden of hospital-acquired infections in a network of community hospitals. Infect Control Hosp Epidemiol. 2013;34(11):1229–30.
Article
PubMed
PubMed Central
Google Scholar
Stewart B, Khanduri P, McCord C, Ohene-Yeboah M, Uranues S, Vega Rivera F, et al. Global disease burden of conditions requiring emergency surgery. Br J Surg. 2014;101(1):e9–e22.
Article
CAS
PubMed
Google Scholar
Sangrasi AK, Leghari AA, Memon A, Talpur AK, Qureshi GA, Memon JM, et al. Surgical site infection rate and associated risk factors in elective general surgery at a public sector medical university in Pakistan. Int Wound J. 2008;5(1):74–8.
Article
PubMed
PubMed Central
Google Scholar
Pishori T, Siddiqui AR, Ahmed M. Surgical wound infection surveillance in general surgery procedures at a teaching hospital in Pakistan. Am J Infect Control. 2003;31(5):296–301.
Article
PubMed
Google Scholar
Mawalla B, Mshana SE, Chalya PL, Imirzalioglu C, Mahalu W. Predictors of surgical site infections among patients undergoing major surgery at Bugando medical Centre in Northwestern Tanzania. BMC Surg. 2011;11:21.
Article
PubMed
PubMed Central
Google Scholar
Bajracharya A, Agrawal A, Yam B, Agrawal C, Lewis O. Spectrum of surgical trauma and associated head injuries at a university hospital in eastern Nepal. J Neurosci Rural Pract. 2010;1(1):2–8.
Article
CAS
PubMed
PubMed Central
Google Scholar
Murray BW, Cipher DJ, Pham T, Anthony T. The impact of surgical site infection on the development of incisional hernia and small bowel obstruction in colorectal surgery. Am J Surg. 2011;202(5):558–60.
Article
PubMed
Google Scholar
Delamaire M, Maugendre D, Moreno M, Le Goff MC, Allannic H, Genetet B. Impaired leucocyte functions in diabetic patients. Diabet Med. 1997;14(1):29–34.
Article
CAS
PubMed
Google Scholar
Giacometti A, Cirioni O, Schimizzi AM, Del Prete MS, Barchiesi F, D'errico MM, et al. Epidemiology and microbiology of surgical wound infections. J Clin Microbiol. 2000;38(2):918–22.
Article
CAS
PubMed
PubMed Central
Google Scholar
Verma AK, Kapoor AK, Bhargava A. Antimicrobial susceptibility pattern of bacterial isolates from surgical wound infections in tertiary Care Hospital in Allahabad, India. Internet J Med Update-EJOURNAL. 2012;7(1):27–34.
Google Scholar
Schnüriger B, Inaba K, Eberle BM, Wu T, Talving P, Bukur M, Belzberg H, Demetriades D. Microbiological profile and antimicrobial susceptibility in surgical site infections following hollow viscus injury. J Gastrointest Surg. 2010;14(8):1304–10.
Article
PubMed
Google Scholar
Sani RA, Garba SA, Oyewole OA. Antibiotic resistance profile of gram negative bacteria isolated from surgical wounds in Minna, Bida, Kontagora and Suleja areas of Niger state. Am J Med Med Sci. 2012;2(1):20–4.
Article
Google Scholar
Montravers P, Gauzit R, Muller C, Marmuse JP, Fichelle A, Desmonts JM. Emergence of antibiotic-resistant bacteria in cases of peritonitis after intraabdominal surgery affects the efficacy of empirical antimicrobial therapy. Clin Infect Dis. 1996;23(3):486–94.
Article
CAS
PubMed
Google Scholar
Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Giannini MM. Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62(1):10–24.
Article
CAS
PubMed
Google Scholar
Samaranayake LP, MacFarlane TW, Lamey PJ, Ferguson MM. A comparison of oral rinse and imprint sampling techniques for the detection of yeast, coliform and Staphylococcus aureus carriage in the oral cavity. J Oral Pathol. 1986;15(7):386–8.
Article
CAS
PubMed
Google Scholar
Costa SF, Marinho I, Araujo EAP, Manrique AEI, Medeiros EAS, Levin AS. Nososcomial fungaemia: a 2-year prospective study. J Hosp Infect. 2000;45(1):69–72.
Article
CAS
PubMed
Google Scholar
Wroblewska MM, Swoboda-Kopec E, Rokosz A, Krawczyk E, Marchel H, Luczak M. Epidemiology of clinical isolates of Candida albicans and their susceptibility to triazoles. Int J Antimicrob Agents. 2002;20(6):472–5.
Article
CAS
PubMed
Google Scholar
Isibor JO, Oseni A, Eyaufe A, Osagie R, Turay A. Incidence of aerobic bacteria and Candida albicans in post-operative wound infections. Afr J Microbiol Res. 2008;2(11):288–91.
Google Scholar
Li S, An YZ. Retrospective analysis of invasive fungal infection in surgical intensive care unit. Zhonghua Yi Xue Za Zhi. 2010;90(6):382–5.
PubMed
Google Scholar
Citak S, Ozcelik B, Cesur S, Abbasoglu U. In vitro susceptibility of Candida species isolated from blood culture to some antifungal agents. Jpn J Infect Dis. 2005;58(1):44–6.
CAS
PubMed
Google Scholar
Badiee P, Alborzi A. Susceptibility of clinical Candida species isolates to antifungal agents by E-test, Southern Iran: A five year study. Iran J Microbiol. 2011;3(4):183–88.
Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–63.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfaller MA, Moet GJ, Messer SA, Jones RN, Castanheira M. Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community-onset and nosocomial isolates in the SENTRY antimicrobial surveillance program, 2008-2009. Antimicrob Agents Chemother. 2011;55(2):561–6.
Article
CAS
PubMed
Google Scholar
Mandras N, Tullio V, Allizond V, Scalas D, Banche G, Roana J, et al. In vitro activities of fluconazole and voriconazole against clinical isolates of Candida spp. determined by disk diffusion testing in Turin, Italy. Antimicrob Agents Chemother. 2009;53(4):1657–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Farooqi JQ, Jabeen K, Saeed N, Iqbal N, Malik B, Lockhart SR, et al. Invasive candidiasis in Pakistan: clinical characteristics, species distribution and antifungal susceptibility. J Med Microbiol. 2013;62(02):259–68.
Article
CAS
PubMed
Google Scholar
Jensen RH, Astvad KMT, Silva LV, et al. Stepwise emergence of azole, echinocandin and amphotericin B multidrug resistance in vivo in Candida albicans orchestrated by multiple genetic alterations. J Antimicrob Chemother. 2015;70(9):2551–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Krcmery V, Barnes AJ. Non-albicans Candida spp. causing fungaemia: pathogenicity and antifungal resistance. J Hosp Infect. 2002;50(4):243–60.
Article
CAS
PubMed
Google Scholar
Orozco AS, Higginbotham LM, Hitchcock CA, et al. Mechanism of fluconazole resistance in Candida krusei. Antimicrob Agents Chemother. 1998;42(10):2645–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Pfaller MA, Messer SA, Hollis RJ, Jones RN, Doern GV, Brandt ME, et al. Trends in species distribution and susceptibility to fluconazole among blood stream isolates of Candida species in the United States. Diagn Microbiol Infect Dis. 1999;33(4):217–22.
Article
CAS
PubMed
Google Scholar
Pfaller MA, Messer SA, Hollis RJ, Jones RN. In vitro activities of posaconazole (Sch 56592) compared with those of itraconazole and fluconazole against 3,685 clinical isolates of Candida spp. and Cryptococcus neoformans. Antimicrob Agents Chemother. 2001;45(10):2862–4.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kalkanci A, Berk E, Aykan B, Caglar K, Hizel K, Arman D, et al. Epidemiology and antifungal susceptibility of Candida species isolated from hospitalized patients. J Med Mycol. 2007;17(1):16–20.
Article
Google Scholar
Baliga S, Muglikar S, Kale R. Salivary pH: a diagnostic biomarker. J Indian Soc Periodontol. 2013;17(4):461–5.
Article
PubMed
PubMed Central
Google Scholar
Carvalho-Pereira J, Vaz C, Carneiro C, Pais C, Sampaio P. Genetic variability of Candida albicans Sap8 propeptide in isolates from different types of infection. Biomed Res Int. 2015;2015:14834.
Article
CAS
Google Scholar
Jasim ST, Flayyih MT, Hassan AA. Isolation and identification of Candida spp. from different clinical specimens and study the virulence factors. World J Pharm Pharmaceut Sci. 2016;5(7):121–37.
CAS
Google Scholar
Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67(3):400–28.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gupta PC, Ray CS. Smokeless tobacco and health in India and South Asia. Respirology. 2003;8(4):419–31.
Article
PubMed
Google Scholar
Patil S, Rao RS, Sanketh DS, Amrutha N. Microbial flora in oral diseases. J Contemp Dent Pract. 2013;14(6):1202–8.
Article
PubMed
Google Scholar
Anila K, Hallikeri K, Shubhada C, Naikmasur VG, Kulkarni RD. Comparative study of Candida in oral submucous fibrosis and healthy individuals. Revista Odonto Ciência. 2011;26(1):71–6.
Article
Google Scholar
de Azevedo Izidoro ACS, Semprebom AM, Baboni FB, Rosa RT, Machado MAN, Samaranayake LP, et al. Low virulent oral Candida albicans strains isolated from smokers. Arch Oral Biol. 2012;57(2):148–53.
Article
PubMed
Google Scholar
Sitterlé E, Maufrais C, Sertour N, et al. Within-host genomic diversity of Candida albicans in healthy carriers. Sci Rep. 2019;9:2563.
Article
PubMed
PubMed Central
CAS
Google Scholar
Pinto E, Ribeiro IC, Ferreira NJ, Fortes CE, Fonseca PA, Figueiral MH. Correlation between enzyme production, germ tube formation and susceptibility to fluconazole in Candida species isolated from patients with denture-related stomatitis and control individuals. J Oral Pathol Med. 2008;37(10):587–92.
Article
CAS
PubMed
Google Scholar
Annemarie B, Ad CF. High levels of hydrolytic enzymes secreted by Candida Albicans isolates involved in respiratory infections. J Med Microbiol. 2003;52(Pt 11):971–4.
Google Scholar
Ying S, Chunyang L. Correlation between phospholipase of Candida albicans and resistance to fluconazole. Mycoses. 2012;55(1):50–5.
Article
CAS
PubMed
Google Scholar
Fekete-forgács K, Gyüre L, Lenkey B. Changes of virulence factors accompanying the phenomenon of induced fluconazole resistance in Candida albicans. Mycoses. 2000;43(7–8):273–9.
Article
PubMed
Google Scholar
Price MF, Wilkinson ID, Gentry LO. Plate method for detection of phospholipase activity in Candida albicans. Sabouraudia. 1982;20(1):7–14.
Article
CAS
PubMed
Google Scholar
Sardi JC, Duque C, Höfling JF, Gonçalves RB. Genetic and phenotypic evaluation of Candida albicans strains isolated from subgingival biofilm of diabetic patients with chronic periodontitis. Med Mycol. 2012;50(5):467–75.
Article
CAS
PubMed
Google Scholar