Pedrós-Alió C. The rare bacterial biosphere. Annu Rev Mar Sci. 2012;4:449–66. https://doi.org/10.1146/annurev-marine-120710-100948.
Article
Google Scholar
Shade A, Hogan CS, Klimowicz AK, Linske M, McManus PS, Handelsman J. Culturing captures members of the soil rare biosphere. Environ Microbiol. 2012;14:2247–52. https://doi.org/10.1111/j.1462-2920.2012.02817.x.
Article
PubMed
PubMed Central
Google Scholar
Suzuki MT, Rappé MS, Haimberger ZW, Winfield H, Adair N, Ströbel J, et al. Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Microbiol. 1997;63:983–9.
Article
CAS
Google Scholar
Lekunberri I, Gasol JM, Acinas SG, Gómez-Consarnau L, Crespo BG, Casamayor EO, et al. The phylogenetic and ecological context of cultured and whole genome-sequenced planktonic bacteria from the coastal NW Mediterranean Sea. Syst Appl Microbiol. 2014;37:216–28. https://doi.org/10.1016/j.syapm.2013.11.005.
Article
PubMed
Google Scholar
Pinhassi J, Li Zweifel U, Hagström Å. Dominant marine bacterioplankton species found among colony-forming bacteria. Appl Environ Microbiol. 1997;63:3359–66.
Article
CAS
Google Scholar
Eilers H, Pernthaler J, Glöckner FO, Amann R. Culturability and in situ abundance of pelagic Bacteria from the North Sea. Appl Environ Microbiol. 2000;66:3044–51.
Article
CAS
Google Scholar
Yang S-J, Kang I, Cho J-C. Expansion of cultured bacterial diversity by large-scale dilution-to-extinction culturing from a single seawater sample. Microb Ecol. 2016;71:29–43. https://doi.org/10.1007/s00248-015-0695-3.
Article
CAS
PubMed
Google Scholar
Kai W, Peisheng Y, Rui M, Wenwen J, Zongze S. Diversity of culturable bacteria in deep-sea water from the South Atlantic Ocean. Bioengineered. 2017;8:572–84. https://doi.org/10.1080/21655979.2017.1284711.
Article
PubMed
PubMed Central
Google Scholar
Liu Q, Fang J, Li J, Zhang L, Xie B-B, Chen X-L, et al. Depth-resolved variations of cultivable bacteria and their extracellular enzymes in the water column of the New Britain trench. Front Microbiol. 2018;9:135. https://doi.org/10.3389/fmicb.2018.00135.
Article
PubMed
PubMed Central
Google Scholar
Castro Da Silva MA, Cavalett A, Spinner A, Rosa DC, Jasper RB, Quecine MC, et al. Phylogenetic identification of marine bacteria isolated from deep-sea sediments of the eastern South Atlantic Ocean; 2013. https://doi.org/10.1186/2193-1801-2-127.
Book
Google Scholar
Nakagawa S, Takai K. Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol. 2008;65:1–14. https://doi.org/10.1111/j.1574-6941.2008.00502.x.
Article
CAS
PubMed
Google Scholar
Ferrera I, Banta AB, Reysenbach A-L. Spatial patterns of Aquificales in deep-sea vents along the eastern Lau spreading center (SW Pacific). Syst Appl Microbiol. 2014;37:442–8. https://doi.org/10.1016/j.syapm.2014.04.002.
Article
PubMed
Google Scholar
Grosche A, Sekaran H, Pérez-Rodríguez I, Starovoytov V, Vetriani C. Cetia pacifica gen. Nov., sp. nov., a chemolithoautotrophic, thermophilic, nitrate-ammonifying bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol. 2015;4:1144–50. https://doi.org/10.1099/ijs.0.000070.
Article
CAS
Google Scholar
Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, et al. Comparative metagenomics of microbial communities. Science. 2005;308:554–7. https://doi.org/10.1126/science.1107851.
Article
CAS
PubMed
Google Scholar
Eloe EA, Shulse CN, Fadrosh DW, Williamson SJ, Allen EE, Bartlett DH. Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ Microbiol Rep. 2011;3:449–58. https://doi.org/10.1111/j.1758-2229.2010.00223.x.
Article
PubMed
Google Scholar
Zobell CE, Morita RY. Barophilic bacteria in some deep sea sediments. J Bacteriol. 1957;73:563–8.
Article
CAS
Google Scholar
Hwang CY, Lee I, Cho Y, Lee YM, Jung Y-J, Baek K, et al. Sediminicola arcticus sp. nov., a psychrophilic bacterium isolated from deep-sea sediment, and emended description of the genus Sediminicola. Int J Syst Evol Microbiol. 2015;5:1567–71. https://doi.org/10.1099/ijs.0.000138.
Article
CAS
Google Scholar
Chen P, Zhang L, Guo X, Dai X, Liu L, Xi L, et al. Diversity, biogeography, and biodegradation potential of Actinobacteria in the deep-sea sediments along the southwest Indian ridge. Front Microbiol. 2016;7:1340. https://doi.org/10.3389/fmicb.2016.01340.
Article
PubMed
PubMed Central
Google Scholar
Sahm K, Knoblauch C, Amann R. Phylogenetic affiliation and quantification of psychrophilic sulfate-reducing isolates in marine Arctic sediments. Appl Environ Microbiol. 1999;65:3976–81.
Article
CAS
Google Scholar
Finster KW, Kjeldsen KU. Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov. and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate-reducing bacteria isolated from the oxygen minimum zone off the coast of Peru. Antonie van Leeuwenhoek. Int J Gen Mol Microbiol. 2010;97:221–9.
CAS
Google Scholar
Mulla A, Fernandes G, Menezes L, Meena RM, Naik H, Gauns M, et al. Diversity of culturable nitrate-reducing bacteria from the Arabian Sea oxygen minimum zone. Deep Res Part II Top Stud Oceanogr. 2018;156:27–33. https://doi.org/10.1016/j.dsr2.2017.12.014.
Article
CAS
Google Scholar
Menezes LD, Fernandes GL, Mulla AB, Meena RM, Damare SR. Diversity of culturable Sulphur-oxidising bacteria in the oxygen minimum zones of the northern Indian Ocean. J Mar Syst. 2018. https://doi.org/10.1016/j.jmarsys.2018.05.007.
Tabor PS, Ohwada K, Colwell RR. Filterable marine bacteria found in the deep sea: distribution, taxonomy, and response to starvation. Microb Ecol. 1981;7:67–83. https://doi.org/10.1007/BF02010479.
Article
CAS
PubMed
Google Scholar
Kaye JZ, Baross JA. High incidence of halotolerant bacteria in Pacific hydrothermal-vent and pelagic environments. FEMS Microbiol Ecol. 2000;32:249–60.
Article
CAS
Google Scholar
Yuan J, Lai Q, Sun F, Zheng T, Shao Z. The diversity of PAH-degrading bacteria in a deep-sea water column above the Southwest Indian Ridge. Front Microbiol. 2015;6:853. https://doi.org/10.3389/fmicb.2015.00853.
Article
PubMed
PubMed Central
Google Scholar
Faith DP. Conservation evaluation and phylogenetic diversity. Biol Conserv. 1992;61:1–10. https://doi.org/10.1016/0006-3207(92)91201-3.
Article
Google Scholar
Webb CO, Ackerly DD, McPeek MA, Donoghue MJ. Phylogenies and community ecology. Annu Rev Ecol Syst. 2002;33:475–505. https://doi.org/10.1146/annurev.ecolsys.33.010802.150448.
Article
Google Scholar
Karsenti E, Acinas SG, Bork P, Bowler C, de Vargas C, Raes J, et al. A holistic approach to marine eco-systems biology. PLoS Biol. 2011;9:7–11.
Article
Google Scholar
Duarte CM. Seafaring in the 21St century: the Malaspina 2010 circumnavigation expedition. Limnol Oceanogr Bull. 2015;24:11–4. https://doi.org/10.1002/lob.10008.
Article
Google Scholar
Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45. https://doi.org/10.1038/nrmicro3330.
Article
CAS
PubMed
Google Scholar
Sogin ML, Morrison HG, Huber JA, Welch DM, Huse SM, Neal PR, et al. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc Natl Acad Sci U S A. 2006;103:12115–20. https://doi.org/10.1073/pnas.0605127103.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jones SE, Lennon JT. Dormancy contributes to the maintenance of microbial diversity. Proc Natl Acad Sci U S A. 2010;107:5881–6. https://doi.org/10.1073/pnas.0912765107.
Article
PubMed
PubMed Central
Google Scholar
Swan BK, Tupper B, Sczyrba A, Lauro FM, Martinez-Garcia M, González JM, et al. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Proc Natl Acad Sci U S A. 2013;110:11463–8. https://doi.org/10.1073/pnas.1304246110.
Article
PubMed
PubMed Central
Google Scholar
Mestre M, Ruiz-González C, Logares R, Duarte CM, Gasol JM, Sala MM. Sinking particles promote vertical connectivity in the ocean microbiome. Proc Natl Acad Sci U S A. 2018;115:E6799–807. https://doi.org/10.1073/pnas.1802470115.
Article
CAS
PubMed
PubMed Central
Google Scholar
Acinas SG, Antón J, Rodríguez-Valera F. Diversity of free-living and attached bacteria in offshore Western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl Environ Microbiol. 1999;65:514–22.
Article
CAS
Google Scholar
Crespo BG, Pommier T, Fernández-Gómez B, Pedrós-Alió C. Taxonomic composition of the particle-attached and free-living bacterial assemblages in the Northwest Mediterranean Sea analyzed by pyrosequencing of the 16S rRNA. Microbiologyopen. 2013;2:541–52. https://doi.org/10.1002/mbo3.92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Salazar G, Cornejo-Castillo FM, Borrull E, Díez-Vives C, Lara E, et al. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes. Mol Ecol. 2015;24:5692–706. https://doi.org/10.1111/mec.13419.
Article
PubMed
Google Scholar
Selje N, Brinkhoff T, Simon M. Detection of abundant bacteria in the Weser estuary using culture-dependent and culture-independent approaches. Aquat Microb Ecol. 2005;39:17–34.
Article
Google Scholar
Zeng Y, Zou Y, Grebmeier JM, He J, Zheng T. Culture-independent and -dependent methods to investigate the diversity of planktonic bacteria in the northern Bering Sea. Polar Biol. 2012;35:117–29.
Article
Google Scholar
Tonon LAC, Moreira APB, Thompson F. The family Erythrobacteraceae. In: Rosenberg E, EF DL, Lory S, Stackebrandt E, Thompson F, editors. The Prokaryotes. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 213–35. https://doi.org/10.1007/978-3-642-30197-1_376.
Chapter
Google Scholar
Crespo BG, Wallhead PJ, Logares R, Pedrós-alió C. Probing the rare biosphere of the north- West Mediterranean Sea : an experiment with high sequencing effort. PLoS One. 2016. https://doi.org/10.1371/journal.pone.0159195.
Salazar G, Cornejo-Castillo FM, Benítez-barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM, et al. Global diversity and biogeography of deep-sea pelagic prokaryotes. The ISME Journal. 2016;10:596–608. https://doi.org/10.1038/ismej.2015.137.
Article
PubMed
Google Scholar
Baumann L, Baumann P, Mandel M, Allen RD. Taxonomy of aerobic marine eubacteria. J Bacteriol. 1972;110:402–29.
Article
CAS
Google Scholar
Fuhrman JA, Davis AA. Widespread Archaea and novel Bacteria from the deep sea as shown by 16S rRNA gene sequences. Mar Ecol Prog Ser. 1997;150:275–85.
Article
Google Scholar
García-Martínez J, Acinas SG, Massana R, Rodríguez-Valera F. Prevalence and microdiversity of Alteromonas macleodii-like microorganisms in different oceanic regions. Environ Microbiol. 2002;4:42–50.
Article
Google Scholar
Gärtner A, Blümel M, Wiese J, Imhoff JF. Isolation and characterisation of bacteria from the eastern Mediterranean deep sea. Antonie van Leeuwenhoek, Int J Gen Mol Microbiol. 2011;100:421–35.
Article
Google Scholar
Pedler BE, Aluwihare LI, Azam F. Single bacterial strain capable of significant contribution to carbon cycling in the surface ocean. Proc Natl Acad Sci. 2014;111:7202–7. https://doi.org/10.1073/pnas.1401887111.
Article
CAS
PubMed
Google Scholar
Acinas SG, Klepac-Ceraj V, Hunt DE, Pharino C, Ceraj I, Distel DL, et al. Fine-scale phylogenetic architecture of a complex bacterial community. Nature. 2003;104:551–4.
Google Scholar
Stackebrandt E, Ebers J. Taxonomic parameters revisited: tarnished gold standards. Microbiol Today. 2006;33:152–5.
Google Scholar
Nedashkovskaya OI, Kim SB, Zhukova NV, Kwak J, Mikhailov VV, Bae KS. Mesonia mobilis sp. nov., isolated from seawater, and emended description of the genus Mesonia. Int J Syst Evol Microbiol. 2006;56:2433–6. https://doi.org/10.1099/ijs.0.64376-0.
Article
CAS
PubMed
Google Scholar
Ma L, Kim J, Hatzenpichler R, Karymov MA, Hubert N, Hanan IM, et al. Gene-targeted microfluidic cultivation validated by isolation of a gut bacterium listed in human microbiome Project’s Most wanted taxa. Proc Natl Acad Sci U S A. 2014;111:9768. https://doi.org/10.1073/PNAS.1404753111.
Article
CAS
PubMed
PubMed Central
Google Scholar
Boitard L, Cottinet D, Bremond N, Baudry J, Bibette J. Growing microbes in millifluidic droplets. Eng Life Sci. 2015;15:318–26. https://doi.org/10.1002/elsc.201400089.
Article
CAS
Google Scholar
Ingham CJ, Sprenkels A, Bomer J, Molenaar D, van den Berg A, van Hylckama Vlieg JET, et al. The micro-petri dish, a million-well growth chip for the culture and high-throughput screening of microorganisms. Proc Natl Acad Sci. 2007;104:18217–22. https://doi.org/10.1073/pnas.0701693104.
Article
PubMed
Google Scholar
Hesselman MC, Odoni DI, Ryback BM, de Groot S, van Heck RGA, Keijsers J, et al. A multi-platform flow device for microbial (co-) cultivation and microscopic analysis. PLoS One. 2012;7:e36982. https://doi.org/10.1371/journal.pone.0036982.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gao W, Navarroli D, Naimark J, Zhang W, Chao S, Meldrum DR. Microbe observation and cultivation array (MOCA) for cultivating and analyzing environmental microbiota. Microbiome. 2013;1:4. https://doi.org/10.1186/2049-2618-1-4.
Article
PubMed
PubMed Central
Google Scholar
Ferrari BC, Binnerup SJ, Gillings M. Microcolony cultivation on a soil substrate membrane system selects for previously uncultured soil bacteria. Appl Environ Microbiol. 2005;71:8714–20. https://doi.org/10.1128/AEM.71.12.8714-8720.2005.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ben-Dov E, Kramarsky-Winter E, Kushmaro A. An in situ method for cultivating microorganisms using a double encapsulation technique. FEMS Microbiol Ecol. 2009;68:363–71. https://doi.org/10.1111/j.1574-6941.2009.00682.x.
Article
CAS
PubMed
Google Scholar
Park J, Kerner A, Burns MA, Lin XN. Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One. 2011;6:e17019. https://doi.org/10.1371/journal.pone.0017019.
Article
CAS
PubMed
PubMed Central
Google Scholar
Lagier J-C, Armougom F, Million M, Hugon P, Pagnier I, Robert C, et al. Microbial culturomics: paradigm shift in the human gut microbiome study. Clin Microbiol Infect. 2012;18:1185–93. https://doi.org/10.1111/1469-0691.12023.
Article
CAS
PubMed
Google Scholar
Giovannoni S, Stingl U. The importance of culturing bacterioplankton in the “omics” age. Nat Rev Microbiol. 2007;5:820–6. https://doi.org/10.1038/nrmicro1752.
Article
CAS
PubMed
Google Scholar
Lara E, Arrieta JM, Garcia-Zarandona I, Boras JA, Duarte CM, et al. Experimental evaluation of the warming effect on viral, bacterial and protistan communities in two contrasting Arctic systems. Aquat Microb Ecol. 2013;70:17–32.
Article
Google Scholar
Villar E, Farrant GK, Follows M, Garczarek L, Speich S, Audic S, et al. Environmental characteristics of Agulhas rings affect interocean plankton transport. Science. 2015;348:1261447. https://doi.org/10.1126/science.1261447.
Article
CAS
PubMed
Google Scholar
Zobell CE. Studies on marine bacteria. I. the requirements of heterotrophic aerobes. J Mar Res. 1941;4:42–75.
Google Scholar
Muyzer G, de Waal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol. 1993;59:695–700.
Article
CAS
Google Scholar
Sánchez O, Gasol JM, Massana R, Mas J, Pedrós-Alió C. Comparison of different denaturing gradient gel electrophoresis primer sets for the study of marine bacterioplankton communities. Appl Environ Microbiol. 2007;73:5962–7. https://doi.org/10.1128/AEM.00817-07.
Article
CAS
PubMed
PubMed Central
Google Scholar
Page KA, Connon SA, Giovannoni SJ. Representative freshwater bacterioplankton isolated from crater Lake. Oregon Appl Environ Microbiol. 2004;70:6542–50. https://doi.org/10.1128/AEM.70.11.6542-6550.2004.
Article
CAS
PubMed
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1. https://doi.org/10.1093/bioinformatics/btq461.
Article
CAS
PubMed
Google Scholar
Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9. https://doi.org/10.1093/bioinformatics/bts252.
Article
CAS
PubMed
PubMed Central
Google Scholar
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10. https://doi.org/10.1016/S0022-2836(05)80360-2.
Article
CAS
Google Scholar
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28:1647–9.
Article
Google Scholar
Kozlov AM, Darriba D, Flouri T, Morel B, Stamatakis A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics. 2019;35:4453–5. https://doi.org/10.1093/bioinformatics/btz305.
Article
CAS
PubMed
PubMed Central
Google Scholar
R core team. A language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria https://www.R-project.org/. 2017.
Google Scholar
Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan: community ecology package. R package version 2.5–3. https://CRAN.R-project.org/package=vegan. 2018.
Paradis E, Claude JSK. APE: analyses of phylogenetics and evolution in R language. Bioinformatics. 2004;20:289–90.
Article
CAS
Google Scholar
Kembel S, Cowan P, Helmus M, Cornwell W, Morlon H, Ackerly D, et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26:1463–4.
Article
CAS
Google Scholar
Salazar, G. EcolUtils: Utilities for community ecology analysis. R package version 0.1. https://github.com/GuillemSalazar/EcolUtils. 2018.
Colwell RK, Coddington JA. Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc London Ser B Biol Sci. 1994;345:101–18. https://doi.org/10.1098/rstb.1994.0091.
Article
CAS
Google Scholar
Shannon CE. A mathematical theory of communication. Bell Syst Tech J. 1948;27:379–423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x.
Article
Google Scholar
Giovannoni SJ, Mullins TD, Field KG. Microbial diversity in oceanic systems: rRNA approaches to the study of unculturable microbes. In: Joint I, editor. Molecular Ecology of Aquatic Microbes. Berlin, Heidelberg: Springer Berlin Heidelberg; 1995. p. 217–48. https://doi.org/10.1007/978-3-642-79923-5_13.
Chapter
Google Scholar
Lucena T, Sanz-Sáez I, Arahal DR, Acinas SG, Sánchez O, Pedrós-Alió C, et al. Mesonia oceanica sp. nov., isolated from oceans during the Tara oceans expedition, with a preference for mesopelagic waters. Int. J. Syst. Evol. Microbiol. 2020; https://doi.org/10.1099/ijsem.0.004296.