Kamau D, Spiertz J, Oenema O. Carbon and nutrient stocks of tea plantations differing in age, genotype and plant population density. Plant Soil. 2008;307:29–39.
CAS
Google Scholar
Ruan J, Haerdter R, Gerendas J. Impact of nitrogen supply on carbon/nitrogen allocation: a case study on amino acids and catechins in green tea [Camellia sinensis (L.) O. Kuntze] plants. Plant Biol. 2010;12(5):724–34.
CAS
PubMed
Google Scholar
Maghanga JK, Kisinyo PO, Kituyi JL, Ng'etich WK. Impact of nitrogen fertilizer applications on surface water nitrate levels within a Kenyan tea plantation. J Chem. 2012;2013(9):196516.
Google Scholar
Yang X, Ni K, Shi Y, Yi X, Zhang Q, Fang L, Ma L, Ruan J. Effects of long-term nitrogen application on soil acidification and solution chemistry of a tea plantation in China. Agric Ecosyst Environ. 2018;252:74–82.
CAS
Google Scholar
Jin C, Zheng S, He Y, Di Z, Zhou Z. Lead contamination in tea garden soils and factors affecting its bioavailability. Chemosphere. 2005;59(8):1151–9.
CAS
PubMed
Google Scholar
Zhang M, Fang L. Tea plantation–induced activation of soil heavy metals. Commun Soil Sci Plant Anal. 2007;38(11–12):1467–78.
CAS
Google Scholar
Ruan J, Ma L, Yang Y. Magnesium nutrition on accumulation and transport of amino acids in tea plants. J Sci Food Agric. 2012;92(7):1375–83.
CAS
PubMed
Google Scholar
Xiong W, Jousset A, Guo S, Karlsson I, Zhao Q, Wu H, Kowalchuk GA, Shen Q, Li R, Geisen S. Soil protist communities form a dynamic hub in the soil microbiome. ISME J. 2017;12(2):1–5.
CAS
Google Scholar
Qiu S, Wang L, Huang D, Lin X. Effects of fertilization regimes on tea yields, soil fertility, and soil microbial diversity. Chilean J Agric Res. 2014;74:333–9.
Google Scholar
Wang J, Song Y, Ma T, Raza W, Li J, Howland JG, Huang Q, Shen Q. Impacts of inorganic and organic fertilization treatments on bacterial and fungal communities in a paddy soil. Appl Soil Ecol. 2017;112:42–50.
Google Scholar
Singh J, Pandey V, Singh DP. Efficient soil microorganisms: a new dimension for sustainable agriculture and environmental development. Agric Ecosyst Environ. 2011;140(3):339–53.
Google Scholar
Kong AY, Scow K, Córdova-Kreylos A, Holmes W, Six J. Microbial community composition and carbon cycling within soil microenvironments of conventional, low-input, and organic cropping systems. Soil Biol Biochem. 2011;43(1):20–30.
CAS
PubMed
PubMed Central
Google Scholar
Tian W, Wang L, Li Y, Zhuang K, Li G, Zhang J, Xiao X, Xi Y. Responses of microbial activity, abundance, and community in wheat soil after three years of heavy fertilization with manure-based compost and inorganic nitrogen. Agric Ecosyst Environ. 2015;213:219–27.
CAS
Google Scholar
Bending G, Turner M, Rayns F, Marx M, Wood M. Microbial and biochemical soil quality indicators and their potential for differentiating areas under contrasting agricultural management regimes. Soil Biol Biochem. 2004;36(11):1785–92.
CAS
Google Scholar
Li Y, Li Z, Li Z, Jiang Y, Weng B, Lin W. Variations of rhizosphere bacterial communities in tea (Camellia sinensis L.) continuous cropping soil by high-throughput pyrosequencing approach. J Appl Microbiol. 2016;121(3):787–99.
CAS
PubMed
Google Scholar
Li Y, Li Z, Arafat Y, Lin W, Jiang Y, Weng B, Lin W. Characterizing rhizosphere microbial communities in long-term monoculture tea orchards by fatty acid profiles and substrate utilization. Eur J Soil Biol. 2017;81:48–54.
CAS
Google Scholar
Ji L, Wu Z, You Z, Yi X, Ni K, Guo S, Ruan J. Effects of organic substitution for synthetic N fertilizer on soil bacterial diversity and community composition: a 10-year field trial in a tea plantation. Agric Ecosyst Environ. 2018;268:124–32.
Google Scholar
Gu S, Hu Q, Cheng Y, Bai L, Liu Z, Xiao W, Gong Z, Wu Y, Feng K, Deng Y. Application of organic fertilizer improves microbial community diversity and alters microbial network structure in tea (Camellia sinensis) plantation soils. Soil Tillage Res. 2019;195:104356.
Google Scholar
Zhao J, Ni T, Li Y, Wu X, Ran W, Shen B, Shen Q, Zhang R. Responses of bacterial communities in arable soils in a Rice-wheat cropping system to different fertilizer regimes and sampling times. PLoS One. 2014;9(1):e85301.
PubMed
PubMed Central
Google Scholar
Sun R, Zhang X, Guo X, Wang D, Chu H. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw. Soil Biol Biochem. 2015;88:9–18.
CAS
Google Scholar
Zeng J, Liu X, Ling S, Lin X, Chu H. Nitrogen fertilization directly affects soil bacterial diversity and indirectly affects bacterial community composition. Soil Biol Biochem. 2016;92:41–9.
CAS
Google Scholar
Shen W, Ni Y, Gao N, Bian B, Zheng S, Lin X, Chu H. Bacterial community composition is shaped by soil secondary salinization and acidification brought on by high nitrogen fertilization rates. Appl Soil Ecol. 2016;108:76–83.
Google Scholar
Chaudhry V, Rehman A, Mishra A, Chauhan P, Nautiyal C. Changes in bacterial community structure of agricultural land due to long-term organic and chemical amendments. Microb Ecol. 2012;64(2):450–60.
PubMed
Google Scholar
Hamm AC, Tenuta M, Krause DO, Ominski KH, Tkachuk VL, Flaten DN. Bacterial communities of an agricultural soil amended with solid pig and dairy manures, and urea fertilizer. Appl Soil Ecol. 2016;103:61–71.
Google Scholar
Wang K, Chu C, Li X, Wang W, Ren N. Succession of bacterial community function in cow manure composing. Bioresour Technol. 2018;267:63–70.
CAS
PubMed
Google Scholar
Yang Y, Zhou Z, Li X, Liu J. Bacterial diversity as affected by application of manure in red soils of subtropical China. Biol Fertil Soils. 2017;53(6):1–11.
Google Scholar
Kuramae E, Yergeau E, Wong L, Pijl A, van Veen J, Kowalchuk G. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiol Ecol. 2012;79:12–24.
CAS
PubMed
Google Scholar
Janssen P. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl Environ Microbiol. 2006;72(3):1719–28.
CAS
PubMed
PubMed Central
Google Scholar
Smit E, Leeflang P, Gommans S, van den Broek J, van Mil S, Wernars K. Diversity and seasonal fluctuations of the dominant members of the bacterial soil Community in a Wheat Field as determined by cultivation and molecular methods. Appl Environ Microbiol. 2001;67(5):2284–91.
CAS
PubMed
PubMed Central
Google Scholar
Torsvik V, Øvreås L. Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol. 2002;3:240–5.
Google Scholar
Fierer N, Lauber C, Ramirez K, Zaneveld J, Bradford M, Knight R. Comparative metagenomic, phylogenetic and physiological analyses of soil microbial communities across nitrogen gradients. ISME J. 2012;6(5):1007–17.
CAS
PubMed
Google Scholar
Li R, Khafipour E, Krause D, Entz M, de Kievit T, Fernando W. Pyrosequencing reveals the influence of organic and conventional farming systems on bacterial communities. PLoS One. 2012;7(12):e51897.
CAS
PubMed
PubMed Central
Google Scholar
Zhong X, Ma S, Wang S, Wang T, Sun Z, Tang Y, Deng Y, Kida K. A comparative study of composting the solid fraction of dairy manure with or without bulking material: performance and microbial community dynamics. Bioresour Technol. 2017;247:443–52.
PubMed
Google Scholar
Dong X, Reddy G. Soil bacterial communities in constructed wetlands treated with swine wastewater using PCR-DGGE technique. Bioresour Technol. 2010;101(4):1175–82.
CAS
PubMed
Google Scholar
Su W, Zhang L, Li D, Zhan G, Qian J, Yong T. Dissimilatory nitrate reduction by Pseudomonas alcaliphila with an electrode as the sole electron donor. Biotechnol Bioeng. 2012;109(11):2904–10.
CAS
PubMed
Google Scholar
Watts D, Torbert H, Feng Y, Prior S. Soil microbial community dynamics as influenced by composted dairy manure, soil properties, and landscape position. Soil Sci. 2010;175(10):474–86.
CAS
Google Scholar
Horner-Devine M, Carney K, Bohannan BJM. An ecological perspective on bacterial biodiversity. Proc Biol Sci. 2004;271(1535):113–22.
PubMed
PubMed Central
Google Scholar
Geisseler D, Scow K. Long-term effects of mineral fertilizers on soil microorganisms – a review. Soil Biol Biochem. 2014;75:54–63.
CAS
Google Scholar
Zhalnina K, Dias R, Quadros P, Davis-Richardson A, Camargo F, Clark M, Mcgrath S, Hirsch P, Triplett E. Soil pH determines microbial diversity and composition in the park grass experiment. Microb Ecol. 2015;69(2):395–406.
CAS
PubMed
Google Scholar
Rousk J, Bååth E, Brookes P, Lauber C, Lozupone C, Caporaso J, Knight R, Fierer N. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 2010;4(10):1340–51.
PubMed
Google Scholar
Zhang X, Zhang Q, Liang B, Li J. Changes in the abundance and structure of bacterial communities in the greenhouse tomato cultivation system under long-term fertilization treatments. Appl Soil Ecol. 2017;121:82–9.
Google Scholar
Ding J, Jiang X, Ma M, Zhou B, Guan D, Zhao B, Zhou J, Cao F, Li L, Li J. Effect of 35 years inorganic fertilizer and manure amendment on structure of bacterial and archaeal communities in black soil of Northeast China. Appl Soil Ecol. 2016;105:187–95.
Google Scholar
Bram B, Michiel O, Thijs S, Truyens S, Weyens N, Boerjan W, Vangronsveld J. Performance of 16s rDNA Primer Pairs in the Study of Rhizosphere and Endosphere Bacterial Microbiomes in Metabarcoding Studies. Front Microbiol. 2016;7:650.
Walters W, Caporaso J, Lauber C, Fierer N, Knight R. Primer prospector: de novo design and taxonomic analysis of barcoded polymerase chain reaction primers. Bioinformatics. 2015;27(8):1159–61.
Google Scholar
Yan M, Chen S, Huang T, Li B, Li N, Liu K, Zong R, Miao Y, Huang X. Community compositions of phytoplankton and eukaryotes during the mixing periods of a drinking water reservoir: dynamics and interactions. Int J Environ Res Public Health. 2020;17(4):1128.
PubMed Central
Google Scholar