Douglas AE. The microbial dimension in insect nutritional ecology. Funct Ecol. 2009;23(1):38–47.
Article
Google Scholar
Hansen AK, Moran NA. The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol. 2014;23(6):1473–96.
Article
PubMed
Google Scholar
Yun J-H, Roh SW, Whon TW, Jung M-J, Kim M-S, Park D-S, et al. Insect gut bacterial diversity determined by environmental habitat, diet, developmental stage, and phylogeny of host. Appl Environ Microbiol. 2014;80(17):5254–64.
Article
PubMed
PubMed Central
CAS
Google Scholar
Breznak J, Brill W, Mertins J, Coppel HC. Nitrogen fixation in termites. Nat. 1973;244:577.
Article
CAS
Google Scholar
Benemann JR. Nitrogen fixation in termites. Sci. 1973;181:164–5.
Article
CAS
Google Scholar
Breznak JA, Mertins JW, Coppel HC. Nitrogen fixation and methane production in a wood-eating cockroach, Cryptocercus Punctulatus scudder (Orthoptera: Blattidae). Univ Wisc For Res Notes. 1974;184:1–2.
Google Scholar
Bridges JR. Nitrogen-fixing bacteria associated with bark beetles. Microb Ecol. 1981;7(2):131–7.
Article
CAS
PubMed
Google Scholar
Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodríguez C. Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb Ecol. 2009;58(4):879–91.
Article
PubMed
CAS
Google Scholar
Morales-Jiménez J, Vera-Ponce de León A, García-Domínguez A, Martínez-Romero E, Zúñiga G, Hernández-Rodríguez C. Nitrogen-fixing and Uricolytic Bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb Ecol. 2013;66(1):200–10.
Article
PubMed
CAS
Google Scholar
Kuranouchi T, Nakamura T, Shimamura S, Kojima H, Goka K, Okabe K, et al. Nitrogen fixation in the stag beetle, Dorcus (Macrodorcus) rectus (Motschulsky) (Col., Lucanidae). J Appl Entomol. 2006;130(9–10):471–2.
Article
CAS
Google Scholar
Behar A, Ben-Yosef M, Lauzon C, et al. Structure and function of the bacterial community associated with the Mediterranean fruit fly. In: Bourtzis K, Miller T, editors. Insect Symbiosis. Boca Raton: CRC Press; 2009. p. 251–71.
Google Scholar
Potrikus CJ, Breznak JA. Gut bacteria recycle uric acid nitrogen in termites: a strategy for nutrient conservation. Proc Natl Acad Sci. 1981;78(7):4601–5.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kashima T, Nakamura T, Tojo S. Uric acid recycling in the shield bug, Parastrachia japonensis (Hemiptera: Parastrachiidae), during diapause. J Insect Physiol. 2006;52(8):816–25.
Article
CAS
PubMed
Google Scholar
Hu Y, Sanders JG, Łukasik P, D’Amelio CL, Millar JS, Vann DR, et al. Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome. Nat Commun. 2018;9(1):964.
Article
PubMed
PubMed Central
CAS
Google Scholar
Nikoh N, Hosokawa T, Oshima K, Hattori M, Fukatsu T. Reductive evolution of bacterial genome in insect gut environment. Genome Biol Evol. 2011;3(1):702–14.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kaiwa N, Hosokawa T, Nikoh N, Tanahashi M, Moriyama M, Meng XY, et al. Symbiont-supplemented maternal investment underpinning host’s ecological adaptation. Curr Biol. 2014;24(20):2465–70.
Article
CAS
PubMed
Google Scholar
Breznak JA, Brune A. Role of microorganisms in the digestion of lignocellulose by termites. Annu Rev Entomol. 1994;39(1):453–87.
Article
CAS
Google Scholar
Martin MM. Cellulose digestion in insects. Comp Biochem Physiol Part A Physiol. 1983;75(3):313–24.
Article
Google Scholar
Dillon RJ, Dillon VM. The gut bacteria of insects: nonpathogenic interactions. Annu Rev Entomol. 2004;49(1):71–92.
Article
CAS
PubMed
Google Scholar
West NE, Skujins J. Nitrogen in desert ecosystems. New York: Hutchinson & Ross; 1978.
Google Scholar
Hartley A, Barger N, Belnap J, Okin GS. Dryland ecosystems. In: Marschner P, Rengel Z, editors. Nutrient cycling in terrestrial ecosystems. Berlin, Heidelberg: Springer; 2007. p. 271–307.
Chapter
Google Scholar
Gutierrez JR, Whitford WG. Chihuahuan Desert annuals: importance of water and nitrogen. Ecol. 1987;68(6):2032–45.
Article
Google Scholar
Shelef O, Helman Y, Friedman A-L-L, Behar A, Rachmilevitch S. Tri-Party underground Symbiosis between a weevil, Bacteria and a desert plant. PLoS One. 2013;8(11):e76588.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bar-Shmuel N, Rogovin E, Rachmilevitch S, Friedman ALL, Shelef O, Hoffmann I, et al. Tripartite symbiosis of plant-weevil-bacteria is a widespread phenomenon in the Negev Desert. Sci Rep. 2018;8(1):2420.
Article
PubMed
PubMed Central
CAS
Google Scholar
Meng F, Rundel PW, Sharifi MR, Bar-Shmuel N, Segoli M. The unique interaction between the summer annual desert plant Salsola inermis Forssk and weevils residing on its roots: mutualism or parasitism? Ecol Entomol. 2019. https://doi.org/10.1111/een.12772.
Craine JM, Elmore AJ, Aidar MPM, Bustamante M, Dawson TE, Hobbie EA, et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 2009;183(4):980–92.
Article
CAS
PubMed
Google Scholar
Conord C, Despres L, Vallier A, Balmand S, Miquel C, Zundel S, et al. Long-term evolutionary stability of bacterial endosymbiosis in Curculionoidea: additional evidence of symbiont replacement in the Dryophthoridae family. Mol Biol Evol. 2008;25(5):859–68.
Article
CAS
PubMed
Google Scholar
Toju H, Tanabe AS, Notsu Y, Sota T, Fukatsu T. Diversification of endosymbiosis: replacements, co-speciation and promiscuity of bacteriocyte symbionts in weevils. ISME J. 2013;7(7):1378.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kuriwada T, Hosokawa T, Kumano N, Shiromoto K, Haraguchi D, Fukatsu T. Biological role of Nardonella endosymbiont in its weevil host. PLoS One. 2010;5(10):e13101.
Article
PubMed
PubMed Central
CAS
Google Scholar
White JA, Richards NK, Laugraud A, Saeed A, Curry MM, McNeill MR. Endosymbiotic candidates for parasitoid defense in exotic and native New Zealand weevils. Microb Ecol. 2015;70(1):274–86.
Article
PubMed
Google Scholar
Ben Guerrero E, Soria M, Salvador R, Ceja-Navarro JA, Campos E, Brodie EL, et al. Effect of different lignocellulosic diets on bacterial microbiota and hydrolytic enzyme activities in the gut of the cotton boll weevil (Anthonomus grandis). Front Microbiol. 2016;7:2093.
Article
PubMed
PubMed Central
Google Scholar
Muhammad A, Fang Y, Hou Y, Shi Z. The gut entomotype of red palm weevil Rhynchophorus ferrugineus Olivier (Coleoptera: Dryophthoridae) and their effect on host nutrition metabolism. Front Microbiol. 2017;8:2291.
Article
PubMed
PubMed Central
Google Scholar
Morales-Jiménez J, Zúñiga G, Ramírez-Saad HC, Hernández-Rodríguez C. Gut-associated bacteria throughout the life cycle of the bark beetle Dendroctonus rhizophagus Thomas and Bright (Curculionidae: Scolytinae) and their cellulolytic activities. Microb Ecol. 2012;64(1):268–78.
Article
PubMed
Google Scholar
Boone CK, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF. Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol. 2013;39(7):1003–6.
Article
CAS
PubMed
Google Scholar
Butera G, Ferraro C, Colazza S, Alonzo G, Quatrini P. The culturable bacterial community of frass produced by larvae of Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae) in the canary island date palm. Lett Appl Microbiol. 2012;54(6):530–6.
Article
CAS
PubMed
Google Scholar
Berasategui A, Axelsson K, Nordlander G, Schmidt A, Borg-Karlson A-K, Gershenzon J, et al. The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles. Mol Ecol. 2016;25(16):4014–31.
Article
CAS
PubMed
Google Scholar
Berasategui A, Salem H, Paetz C, Santoro M, Gershenzon J, Kaltenpoth M, et al. Gut microbiota of the pine weevil degrades conifer diterpenes and increases insect fitness. Mol Ecol. 2017;26(15):4099–110.
Article
CAS
PubMed
Google Scholar
Sudakaran S, Salem H, Kost C, Kaltenpoth M. Geographical and ecological stability of the symbiotic mid-gut microbiota in European firebugs, Pyrrhocoris apterus (Hemiptera, Pyrrhocoridae). Mol Ecol. 2012;21(24):6134–51.
Article
CAS
PubMed
Google Scholar
Baubin C, Farrell AM, Šťovíček A, Ghazaryan L, Giladi I, Gillor O. Seasonal and spatial variability in total and active bacterial communities from desert soil. Pedobiologia (Jena). 2019;74:7–14.
Article
Google Scholar
Hu X, Li M, Zhang F, Chen H. Influence of starvation on the structure of gut-associated bacterial communities in the Chinese white pine beetle (Dendroctonus armandi). Forests. 2016;7(6):126.
Article
Google Scholar
Tagliavia M, Messina E, Manachini B, Cappello S, Quatrini P. The gut microbiota of larvae of Rhynchophorus ferrugineus Oliver (Coleoptera: Curculionidae). BMC Microbiol. 2014;14(1):136.
Article
PubMed
PubMed Central
Google Scholar
Hernández-García JA, Briones-Roblero CI, Rivera-Orduña FN, Zúñiga G. Revealing the gut bacteriome of Dendroctonus bark beetles (Curculionidae: Scolytinae): diversity, core members and co-evolutionary patterns. Sci Rep. 2017;7(1):13864.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hernández-García J, Gonzalez-Escobedo R, Briones-Roblero C, Cano-Ramírez C, Rivera-Orduña F, Zúñiga G. Gut Bacterial Communities of Dendroctonus valens and D. mexicanus (Curculionidae: Scolytinae): A Metagenomic Analysis across Different Geographical Locations in Mexico. Int J Mol Sci. 2018;19(9):2578.
Article
PubMed Central
CAS
Google Scholar
Fontes-Perez H, Olvera-García M, Chávez-Martínez A, Rodriguez-Almeida FA, Arzola-Alvarez CA, Sanchez-Flores A, et al. Genome sequence of Citrobacter sp. CtB7.12, isolated from the gut of the desert subterranean termite Heterotermes aureus. Genome Announc. 2015;3(6):e01290–15.
Article
PubMed
PubMed Central
Google Scholar
Handique G, Phukan A, Bhattacharyya B, Baruah AALH, Rahman SW, Baruah R. Characterization of cellulose degrading bacteria from the larval gut of the white grub beetle Lepidiota mansueta (Coleoptera: Scarabaeidae). Arch Insect Biochem Physiol. 2017;94(2):e21370.
Article
CAS
Google Scholar
Anand AAP, Vennison SJ, Sankar SG, Prabhu DIG, Vasan PT, Raghuraman T, et al. Isolation and characterization of Bacteria from the gut of Bombyx mori that degrade cellulose, Xylan, pectin and starch and their impact on digestion. J Insect Sci. 2010;10(107):1–20.
Article
Google Scholar
Behar A, Yuval B, Jurkevitch E. Enterobacteria-mediated nitrogen fixation in natural populations of the fruit fly Ceratitis capitata. Mol Ecol. 2005;14(9):2637–43.
Article
CAS
PubMed
Google Scholar
French JRJ, Turner GL, Bradbury JF. Nitrogen fixation by Bacteria from the hindgut of termites. J Gen Microbiol. 1976;95(2):202–6.
Article
CAS
Google Scholar
Huang HK, Tseng SK. Nitrate reduction by Citrobacter diversus under aerobic environment. Appl Microbiol Biotechnol. 2001;55(1):90–4.
Article
CAS
PubMed
Google Scholar
Kannan V, Raju P. Nitrification by some Diazotrophic Enterobacteria. Indian J Biotechnol. 2003;2:240–5.
CAS
Google Scholar
Hipp H, Andreesen J, Gottschalk G. The genus Clostridium—nonmedical. In: Balows A, Truper HG, Dworkin M, et al., editors. The Prokaryotes. 2nd ed. New York: Springer; 1992. p. 1800–66.
Google Scholar
Ormerod KL, Wood DLA, Lachner N, Gellatly SL, Daly JN, Parsons JD, et al. Genomic characterization of the uncultured Bacteroidales family S24-7 inhabiting the guts of homeothermic animals. Microbiome. 2016;4(1):36.
Article
PubMed
PubMed Central
Google Scholar
Hussin NA, Zarkasi KZ, Ab Majid AH. Characterization of gut bacterial community associated with worker and soldier castes of Globitermes sulphureus Haviland (Blattodea: Termitidae) using 16S rRNA metagenomic. J Asia Pac Entomol. 2018;21(4):1268–74.
Article
Google Scholar
Hardie J, Whiley RA. The Genus Streptococcus—Oral. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, et al., editors. The Prokaryotes. New York: Springer; 2006. p. 76–107.
Chapter
Google Scholar
Bulla LA Jr, Rhodes RA, St. Julian G. Bacteria as insect pathogens. Annu Rev Microbiol. 1975;29:163–90.
Article
CAS
PubMed
Google Scholar
Briones-Roblero CI, Hernández-García JA, Gonzalez-Escobedo R, Soto-Robles LV, Rivera-Orduña FN, Zúñiga G. Structure and dynamics of the gut bacterial microbiota of the bark beetle, Dendroctonus rhizophagus (Curculionidae: Scolytinae) across their life stages. PLoS One. 2017;12(4):e0175470.
Article
PubMed
PubMed Central
CAS
Google Scholar
Delalibera I, Vasanthakumar A, Klepzig KD, Raffa KF. Composition of the bacterial community in the gut of the pine engraver, Ips pini (say)(Coleoptera) colonizing red pine. Symbiosis Symbiosis. 2007;43:97–104.
CAS
Google Scholar
Rinke R, Costa AS, Fonseca FPP, Almeida LC, Júnior ID, Henrique-Silva F. Microbial diversity in the larval gut of field and laboratory populations of the sugarcane weevil Sphenophorus levis (Coleoptera, Curculionidae). Genet Mol Res. 2011;10(4):2679–91.
Article
CAS
PubMed
Google Scholar
Buchner P. Endosymbiosis of animals with plant microorganisms. 1965; Interscience, N Y.
Toju H, Hosokawa T, Koga R, Nikoh N, Meng XY, Kimura N, et al. “Candidatus Curculioniphilus buchneri,” a novel clade of bacterial endocellular symbionts from weevils of the genus Curculio. Appl Environ Microbiol. 2010;76(1):275–82.
Article
CAS
PubMed
Google Scholar
Zhang G, Browne P, Zhen G, Johnston A, Cadillo-Quiroz H, Franz N. Endosymbiont diversity and evolution across the weevil tree of life. bioRxiv. 2017:171181.
Hammer TJ, McMillan WO, Fierer N. Metamorphosis of a butterfly-associated bacterial community. PLoS One. 2014;9(1):e86995.
Article
PubMed
PubMed Central
CAS
Google Scholar
Chen B, Teh BS, Sun C, Hu S, Lu X, Boland W, et al. Biodiversity and activity of the gut microbiota across the life history of the insect herbivore Spodoptera littoralis. Sci Rep. 2016;6:29505.
Article
CAS
PubMed
PubMed Central
Google Scholar
Engel P, Moran NA. The gut microbiota of insects - diversity in structure and function. FEMS Microbiol Rev. 2013;37:699–735.
Article
CAS
PubMed
Google Scholar
Huang S, Zhang H. The impact of environmental heterogeneity and life stage on the hindgut microbiota of Holotrichia parallela larvae (Coleoptera: Scarabaeidae). PLoS One. 2013;8(2):e57169.
Article
CAS
PubMed
PubMed Central
Google Scholar
Arias-Cordero E, Ping L, Reichwald K, Delb H, Platzer M, Boland W. Comparative evaluation of the gut microbiota associated with the below- and above-ground life stages (larvae and beetles) of the Forest cockchafer, Melolontha hippocastani. PLoS One. 2012;7(12):e51557.
Article
CAS
PubMed
PubMed Central
Google Scholar
Johnston PR, Rolff J. Host and Symbiont jointly control gut microbiota during complete metamorphosis. PLoS Pathog. 2015;11(11):e1005246.
Article
PubMed
PubMed Central
CAS
Google Scholar
Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, et al. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol. 2013;79(11):3468–75.
Article
CAS
PubMed
PubMed Central
Google Scholar
Adams AS, Adams SM, Currie CR, Gillette NE, Raffa KF. Geographic variation in bacterial communities associated with the red turpentine beetle (Coleoptera: Curculionidae). Environ Entomol. 2010;39(2):406–14.
Article
PubMed
Google Scholar
Brune A, Friedrich M. Microecology of the termite gut: structure and function on a microscale. Curr Opin Microbiol. 2000;3:263–9.
Article
CAS
PubMed
Google Scholar
Kim JK, Kim NH, Jang HA, Kikuchi Y, Kim C-H, Fukatsu T, et al. Specific Midgut region controlling the Symbiont population in an insect-microbe gut symbiotic association. Appl Environ Microbiol. 2013;79(23):7229–33.
Article
CAS
PubMed
PubMed Central
Google Scholar
Behar A, Jurkevitch E, Yuval B. Bringing back the fruit into fruit fly-bacteria interactions. Mol Ecol. 2008;17(5):1375–86.
Article
CAS
PubMed
Google Scholar
Guo Z, Lu Y, Yang F, Zeng L, Liang G, Xu Y. Transmission modes of a pesticide-degrading symbiont of the oriental fruit fly Bactrocera dorsalis (Hendel). Appl Microbiol Biotechnol. 2017;101(23–24):8543–56.
Article
CAS
PubMed
Google Scholar
Borenshtein D, Schauer B. Borenshtein D, Schauer BD (2006) The genus Citrobacter. In: Dworkin M, Falkow S, Rosenberg E, et al (ed). The Prokaryotes, 3rd edn. New York:Springer;2006. p. 90–98.
Stevenson JP. The normal bacterial flora of the alimentary canal of laboratory stocks of the desert locust, Schistocerca gregaria Forskål. J Invertebr Pathol. 1966;8(2):205–11.
Article
CAS
PubMed
Google Scholar
Hunt J, Charnley AK. Abundance and distribution of the gut flora of the desert locust, Schistocerca gregaria. J Invertebr Pathol. 1981;38:378–85.
Article
Google Scholar
Dillon RJ, Vennard CT, Charnley AK. A note: gut bacteria produce components of a locust cohesion pheromone. J Appl Microbiol. 2002;92(4):759–63.
Article
CAS
PubMed
Google Scholar
Dillon R, Charnley K. Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol. 2002;153:03–9.
Article
Google Scholar
Lear G, Dickie I, Banks J, Boyer S, Buckley HL, Buckley TR, et al. Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. N Z J Ecol. 2018;42(1):10–50A.
Google Scholar
Shahinyan G, Margaryan A, Panosyan H, Trchounian A. Identification and sequence analyses of novel lipase encoding novel thermophillic bacilli isolated from Armenian geothermal springs. BMC Microbiol. 2017;17(1):103.
Article
PubMed
PubMed Central
CAS
Google Scholar
Caporaso JG, Kuczynski J, Stombaugh J, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335.
Article
CAS
PubMed
PubMed Central
Google Scholar
Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–1.
Article
CAS
PubMed
Google Scholar
Wang Q, Garrity GM, Tiedje JM, Cole JR. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–7.
Article
CAS
PubMed
PubMed Central
Google Scholar
Oksanen J, Blanchet FG, Kindt R, et al. Package ‘vegan’: community ecology package. 2013; version, 2.0.
Martinez AP. pairwiseAdonis: Pairwise multilevel comparison using adonis. 2017; R package version 0.0.1.