Mackie RI, Sghir A, Gaskins HR. Developmental microbial ecology of the neonatal gastrointestinal tract. Am J Clin Nutri. 1999; 69(5):1035–45. https://doi.org/10.1093/ajcn/69.5.1035s.
Article
Google Scholar
Fanaro S, Chierici R, Guerrini P, Vigi V. Intestinal microflora in early infancy: composition and development. Acta Paediatrica. 2003; 92:48–55. https://doi.org/10.1111/j.1651-2227.2003.tb00646.x.
Article
Google Scholar
Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017; 46(4):562–76. https://doi.org/10.1016/j.immuni.2017.04.008.
Article
CAS
PubMed
PubMed Central
Google Scholar
Damman CJ, Miller SI, Surawicz CM, Zisman TL. The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation?Am J Gastroenterol. 2012; 107(10):1452. https://doi.org/10.1038/ajg.2012.93.
Article
PubMed
Google Scholar
Food U, Administration D, et al. Guidance for industry: enforcement policy regarding investigational new drug requirements for use of fecal microbiota for transplantation to treat clostridium difficile infection not responsive to standard therapies. Center Biol Eval Res. 2013. http://www.fda.gov/downloads/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guidances/Vaccines. UCM361393.pdf. Accessed July 2013.
Ossorio PN, Zhou Y. Regulating stool for microbiota transplantation. Gut Microbes. 2018; 10(2):105–8. https://doi.org/10.1080/19490976.2018.1502537.
Article
PubMed
PubMed Central
Google Scholar
Austin M, Mellow M, Tierney WM. Fecal microbiota transplantation in the treatment of clostridium difficile infections. Am J Med. 2014; 127(6):479–83. https://doi.org/10.1016/j.amjmed.2014.02.017.
Article
PubMed
Google Scholar
Rossen NG, Fuentes S, van der Spek MJ, Tijssen JG, Hartman JH, Duflou A, Löwenberg M, van den Brink GR, Mathus-Vliegen EM, de Vos WM, et al. Findings from a randomized controlled trial of fecal transplantation for patients with ulcerative colitis. Gastroenterology. 2015; 149(1):110–8. https://doi.org/10.1053/j.gastro.2015.03.045.
Article
PubMed
Google Scholar
Suskind DL, Brittnacher MJ, Wahbeh G, Shaffer ML, Hayden HS, Qin X, Singh N, Damman CJ, Hager KR, Nielson H, et al. Fecal microbial transplant effect on clinical outcomes and fecal microbiome in active crohn’s disease. Inflammatory Bowel Diseases. 2015; 21(3):556–63. https://doi.org/10.1097/MIB.0000000000000307.
Article
PubMed
Google Scholar
Keshteli A, Millan B, Madsen K. Pretreatment with antibiotics may enhance the efficacy of fecal microbiota transplantation in ulcerative colitis: a meta-analysis. Mucosal Immun. 2017; 10(2):565–6. https://doi.org/10.1038/mi.2016.123.
Article
CAS
Google Scholar
Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, Challis C, Schretter CE, Rocha S, Gradinaru V, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease. Cell. 2016; 167(6):1469–80. https://doi.org/10.1016/j.cell.2016.11.018.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kakihana K, Fujioka Y, Suda W, Najima Y, Kuwata G, Sasajima S, Mimura I, Morita H, Sugiyama D, Nishikawa H, et al. Fecal microbiota transplantation for patients with steroid-resistant acute graft-versus-host disease of the gut. Blood. 2016; 128(16):2083–8. https://doi.org/10.1182/blood-2016-05-717652.
Article
CAS
PubMed
PubMed Central
Google Scholar
Kucher MA, Goloschapov OV, Moiseev IS, Afanasyev BV. Fecal microbiota transplantation as a method to treat complications after hematopoietic stem cell transplantation. Cell Ther Transplant. 2017; 6(1):20–9. https://doi.org/10.18620/ctt-1866-8836-2017-6-1-20-29.
Article
Google Scholar
Manges AR, Steiner TS, Wright AJ. Fecal microbiota transplantation for the intestinal decolonization of extensively antimicrobial-resistant opportunistic pathogens: a review. Infectious Diseases. 2016; 48(8):587–92. https://doi.org/10.1080/23744235.2016.1177199.
Article
CAS
PubMed
Google Scholar
Pamer EG. Resurrecting the intestinal microbiota to combat antibiotic-resistant pathogens. Science. 2016; 352(6285):535–8. https://doi.org/10.1126/science.aad9382.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bilinski J, Grzesiowski P, Sorensen N, Madry K, Muszynski J, Robak K, Wroblewska M, Dzieciatkowski T, Dulny G, Dwilewicz-Trojaczek J, et al. Fecal microbiota transplantation in patients with blood disorders inhibits gut colonization with antibiotic-resistant bacteria: results of a prospective, single-center study. Clin Infectious Diseases. 2017; 65(3):364–70. https://doi.org/10.1093/cid/cix252.
Article
CAS
Google Scholar
Dinh A, Duran C, Bouchand F, Salomon J, Davido B. Fecal microbiota transplantation is a new effective weapon to fight multidrug-resistant bacteria, but harmonization and more data are needed. Clin Infectious Diseases. 2017; 65(8):1425–6. https://doi.org/10.1093/cid/cix538.
Article
Google Scholar
Aidara-Kane A, Angulo FJ, Conly JM, Minato Y, Silbergeld EK, McEwen SA, Collignon PJ. World health organization (who) guidelines on use of medically important antimicrobials in food-producing animals. Antimicrob Resis Infection Control. 2018; 7(1):7.
Article
Google Scholar
Li SS, Zhu A, Benes V, Costea PI, Hercog R, Hildebrand F, Huerta-Cepas J, Nieuwdorp M, Salojärvi J, Voigt AY, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science. 2016; 352(6285):586–9. https://doi.org/10.1126/science.aad8852.
Article
CAS
PubMed
Google Scholar
Smillie CS, Sauk J, Gevers D, Friedman J, Sung J, Youngster I, Hohmann EL, Staley C, Khoruts A, Sadowsky MJ, et al. Strain tracking reveals the determinants of bacterial engraftment in the human gut following fecal microbiota transplantation. Cell Host Microbe. 2018; 23(2):229–40. https://doi.org/10.1016/j.chom.2018.01.003.
Article
CAS
PubMed
PubMed Central
Google Scholar
Bojanova DP, Bordenstein SR. Fecal transplants: what is being transferred?PLoS Biol. 2016; 14(7):1002503. https://doi.org/10.1371/journal.pbio.1002503.
Article
CAS
Google Scholar
Kump P, Wurm P, Gröchenig H, Wenzl H, Petritsch W, Halwachs B, Wagner M, Stadlbauer V, Eherer A, Hoffmann K, et al. The taxonomic composition of the donor intestinal microbiota is a major factor influencing the efficacy of faecal microbiota transplantation in therapy refractory ulcerative colitis. Aliment Pharmacol Ther. 2018; 47(1):67–77. https://doi.org/10.1111/apt.14387.
Article
CAS
PubMed
Google Scholar
Dailey FE, Turse EP, Daglilar E, Tahan V. The dirty aspects of fecal microbiota transplantation: a review of its adverse effects and complications. Curr Opin Pharmacol. 2019; 49:29–33. https://doi.org/10.1016/j.coph.2019.04.008.
Article
CAS
PubMed
Google Scholar
Cammarota G, Ianiro G, Tilg H, Rajilić-Stojanović M, Kump P, Satokari R, Sokol H, Arkkila P, Pintus C, Hart A, et al. European consensus conference on faecal microbiota transplantation in clinical practice. Gut. 2017; 66(4):569–80. https://doi.org/10.1136/gutjnl-2016-313017.
Article
PubMed
Google Scholar
Shouval R, Geva M, Nagler A, Youngster I. Fecal microbiota transplantation for treatment of acute graft-versus-host disease. Clin Hematol Int. 2019; 1(1):28–35. https://doi.org/10.2991/chi.d.190316.002.
Article
PubMed
PubMed Central
Google Scholar
Goloshchapov K. K. S. G. K. S. S. C. Z. A. Churakina. Fecal microbiota transplantation in critical condition of patients in hematological practice. Bulletin Anesthesiol Resuscit. 2019; 16(3):63–73. in Russian. https://doi.org/10.21292/2078-5658-2019-16-3-63-73.
Google Scholar
McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P. An improved greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 2012; 6(3):610–8. https://doi.org/10.1038/ismej.2011.139.
Article
CAS
PubMed
Google Scholar
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. Dada2: high-resolution sample inference from illumina amplicon data. Nature Methods. 2016; 13(7):581–3. https://doi.org/10.1038/nmeth.3869.
Article
CAS
PubMed
PubMed Central
Google Scholar
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The silva ribosomal rna gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2012; 41(D1):590–6. https://doi.org/10.1093/nar/gks1219.
Article
CAS
Google Scholar
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, et al. Reproducible, interactive, scalable and extensible microbiome data science using qiime 2. Nature Biotechnol. 2019; 37(8):852–7. https://doi.org/10.1038/s41587-019-0209-9.
Article
CAS
Google Scholar
Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R. Modeling and Analysis of Compositional Data: John Wiley & Sons; 2015, p. 272. https://doi.org/10.1002/9781119003144.
Book
Google Scholar
Aitchison J. On criteria for measures of compositional difference. Mathematical Geol. 1992; 24(4):365–79. https://doi.org/10.1007/BF00891269.
Article
Google Scholar
Aitchison J. The one-hour course in compositional data analysis or compositional data analysis is simple In: Pawlowsky-Glahn V, editor. Proceedings of the III Annual Conference of the International Association for Mathematical Geology (vol.I). Barcelona, Spain: CIMNE: 1997. p. 3–35. ISBN 84-87867-97-9.
Google Scholar
Martino C, Morton JT, Marotz CA, Thompson LR, Tripathi A, Knight R, Zengler K. A novel sparse compositional technique reveals microbial perturbations. MSystems. 2019; 4(1):00016–19. https://doi.org/10.1128/mSystems.00016-19.
Article
Google Scholar
Uritskiy GV, DiRuggiero J, Taylor J. Metawrap – a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome. 2018; 6(1):158. https://doi.org/10.1186/s40168-018-0541-1.
Article
PubMed
PubMed Central
Google Scholar
Segata N, Waldron L, Ballarini A, Narasimhan V, Jousson O, Huttenhower C. Metagenomic microbial community profiling using unique clade-specific marker genes. Nature Methods. 2012; 9(8):811–4. https://doi.org/10.1038/nmeth.2066.
Article
CAS
PubMed
PubMed Central
Google Scholar
Truong DT, Franzosa EA, Tickle TL, Scholz M, Weingart G, Pasolli E, Tett A, Huttenhower C, Segata N. Metaphlan2 for enhanced metagenomic taxonomic profiling. Nature Methods. 2015; 12(10):902–3. https://doi.org/10.1038/nmeth.3589.
Article
CAS
PubMed
Google Scholar
Egozcue JJ, Pawlowsky-Glahn V. Coda-dendrogram: a new exploratory tool. In: Proceedings of CoDaWork’05, The 2nd Compositional Data Analysis Workshop. Girona, Spain: UdG: 2005. ISBN 84-8458-222-1.
Google Scholar
Pawlowsky-Glahn V, Egozcue JJ. Exploring compositional data with the coda-dendrogram. Au J Stat. 2011; 40(1–2):103–13. https://doi.org/10.17713/ajs.v40i1&2.202.
Google Scholar
Egozcue JJ, Pawlowsky-Glahn V, Gloor GB. Linear association in compositional data analysis. Au J Stat. 2018; 47(1):3–31. https://doi.org/10.17713/ajs.v47i1.689.
Google Scholar
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara R, Simpson GL, Solymos P, Stevens MHH, Wagner H, et al. Package ’vegan’. Community ecology package, version. 2013; 2(9). http://cc.oulu.fi/~jarioksa/opetus/metodi/vegantutor.pdf.
Alneberg J, Bjarnason BS, De Bruijn I, Schirmer M, Quick J, Ijaz UZ, Lahti L, Loman NJ, Andersson AF, Quince C. Binning metagenomic contigs by coverage and composition. Nature Methods. 2014; 11(11):1144–6. https://doi.org/10.1038/nmeth.3103.
Article
CAS
PubMed
Google Scholar
Kang DD, Froula J, Egan R, Wang Z. Metabat, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ. 2015; 3:1165. https://doi.org/10.7717/peerj.1165.
Article
CAS
Google Scholar
Wu Y-W, Simmons BA, Singer SW. Maxbin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2015; 32(4):605–7. https://doi.org/10.1093/bioinformatics/btv638.
Article
PubMed
CAS
Google Scholar
Langmead B, Salzberg SL. Fast gapped-read alignment with bowtie 2. Nature Methods. 2012; 9(4):357–9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. Checkm: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015; 25(7):1043–55. https://doi.org/10.1101/gr.186072.114.
Article
CAS
PubMed
PubMed Central
Google Scholar
Charif D, Lobry JR. Seqinr 1.0-2: a contributed package to the r project for statistical computing devoted to biological sequences retrieval and analysis. In: Structural Approaches to Sequence Evolution. Springer: 2007. p. 207–32. https://doi.org/10.1007/978-3-540-35306-5_10.
Chapter
Google Scholar
Lee I, Kim YO, Park S-C, Chun J. Orthoani: an improved algorithm and software for calculating average nucleotide identity. Int J Syst Evolution Microbiol. 2016; 66(2):1100–3. https://doi.org/10.1099/ijsem.0.000760.
Article
CAS
Google Scholar
Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, Delmont TO. Anvi’o: an advanced analysis and visualization platform for ’omics data. PeerJ. 2015; 3:1319. https://doi.org/10.7717/peerj.1319.
Article
Google Scholar
Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics. 2010; 11(1):119. https://doi.org/10.1186/1471-2105-11-119.
Article
PubMed
PubMed Central
CAS
Google Scholar
Costea PI, Munch R, Coelho LP, Paoli L, Sunagawa S, Bork P. metasnv: a tool for metagenomic strain level analysis. PLoS One. 2017; 12(7):0182392. https://doi.org/10.1371/journal.pone.0182392.
Article
CAS
Google Scholar
Milanese A, Mende DR, Paoli L, Salazar G, Ruscheweyh H-J, Cuenca M, Hingamp P, Alves R, Costea PI, Coelho LP, et al. Microbial abundance, activity and population genomic profiling with motus2. Nature Commun. 2019; 10(1):1014. https://doi.org/10.1038/s41467-019-08844-4.
Article
CAS
Google Scholar
Lopez J, Grinspan A. Fecal microbiota transplantation for inflammatory bowel disease. Gastroenterol Hepa. 2016; 12(6):374–9. https://doi.org/10.2147/JIR.S176190.
Google Scholar
Leszczyszyn JJ, Radomski M, Leszczyszyn AM. Intestinal microbiota transplant–current state of knowledge. Reumatologia. 2016; 54(1):24–8. https://doi.org/10.5114/reum.2016.58758.
Article
PubMed
PubMed Central
Google Scholar
Seekatz AM, Aas J, Gessert CE, Rubin TA, Saman DM, Bakken JS, Young VB. Recovery of the gut microbiome following fecal microbiota transplantation. MBio. 2014; 5(3):00893–14. https://doi.org/10.1128/mBio.00893-14.
Article
CAS
Google Scholar
Shahinas D, Silverman M, Sittler T, Chiu C, Kim P, Allen-Vercoe E, Weese S, Wong A, Low DE, Pillai DR. Toward an understanding of changes in diversity associated with fecal microbiome transplantation based on 16s rrna gene deep sequencing. MBio. 2012; 3(5):00338–12. https://doi.org/10.1128/mBio.00338-12.
Article
CAS
Google Scholar
Hamilton MJ, Weingarden AR, Unno T, Khoruts A, Sadowsky MJ. High-throughput dna sequence analysis reveals stable engraftment of gut microbiota following transplantation of previously frozen fecal bacteria. Gut Microbes. 2013; 4(2):125–35. https://doi.org/10.4161/gmic.23571.
Article
PubMed
PubMed Central
Google Scholar
Weingarden A, González A, Vázquez-Baeza Y, Weiss S, Humphry G, Berg-Lyons D, Knights D, Unno T, Bobr A, Kang J, et al. Dynamic changes in short-and long-term bacterial composition following fecal microbiota transplantation for recurrent clostridium difficile infection. Microbiome. 2015; 3(1):10. https://doi.org/10.1186/s40168-015-0070-0.
Article
PubMed
PubMed Central
Google Scholar
Staley C, Kaiser T, Vaughn BP, Graiziger CT, Hamilton MJ, Ur Rehman T, Song K, Khoruts A, Sadowsky MJ. Predicting recurrence of clostridium difficile infection following encapsulated fecal microbiota transplantation. Microbiome. 2018; 6(1):166. https://doi.org/10.1186/s40168-018-0549-6.
Article
PubMed
PubMed Central
Google Scholar
Mintz M, Khair S, Grewal S, LaComb JF, Park J, Channer B, Rajapakse R, Bucobo JC, Buscaglia JM, Monzur F, et al. Longitudinal microbiome analysis of single donor fecal microbiota transplantation in patients with recurrent clostridium difficile infection and/or ulcerative colitis. PloS One. 2018; 13(1):0190997. https://doi.org/10.1371/journal.pone.0190997.
Article
CAS
Google Scholar
Denef VJ, Kalnejais LH, Mueller RS, Wilmes P, Baker BJ, Thomas BC, VerBerkmoes NC, Hettich RL, Banfield JF. Proteogenomic basis for ecological divergence of closely related bacteria in natural acidophilic microbial communities. Proc Nat Acad Sci. 2010; 107(6):2383–90. https://doi.org/10.1073/pnas.0907041107.
Article
CAS
PubMed
PubMed Central
Google Scholar
Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2016; 65(1):57–62. https://doi.org/10.1136/gutjnl-2015-309618.
Article
CAS
PubMed
Google Scholar
Goodman AL, Kallstrom G, Faith JJ, Reyes A, Moore A, Dantas G, Gordon JI. Extensive personal human gut microbiota culture collections characterized and manipulated in gnotobiotic mice. Proc Nat Acad Sci. 2011; 108(15):6252–7. https://doi.org/10.1073/pnas.1102938108.
Article
CAS
PubMed
PubMed Central
Google Scholar
Gopalakrishnan V, Spencer C, Nezi L, Reuben A, Andrews M, Karpinets T, Prieto P, Vicente D, Hoffman K, Wei S, et al. Gut microbiome modulates response to anti–pd-1 immunotherapy in melanoma patients. Science. 2018; 359(6371):97–103. https://doi.org/10.1126/science.aan4236.
Article
CAS
PubMed
Google Scholar
Gut microbiota elicits a protective immune response against malaria transmission. Cell. 2014. https://doi.org/10.1016/j.cell.2014.10.053.
Article
CAS
PubMed
PubMed Central
Google Scholar
Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J Psych Res. 2016. https://doi.org/10.1016/j.jpsychires.2016.07.019.
Article
PubMed
Google Scholar
Wang S, Xu M, Wang W, Cao X, Piao M, Khan S, Yan F, Cao H, Wang B. Systematic review: Adverse events of fecal Microbiota transplantation. 2016. https://doi.org/10.1371/journal.pone.0161174.
Article
PubMed
PubMed Central
CAS
Google Scholar
Allegretti JR, Kao D, Sitko J, Fischer M, Kassam Z. Early Antibiotic Use after Fecal Microbiota Transplantation Increases Risk of Treatment Failure. Clin Inf Diseases. 2018. https://doi.org/10.1093/cid/cix684.
Article
Google Scholar
Hensley-McBain T, Zevin AS, Manuzak J, Smith E, Gile J, Miller C, Agricola B, Katze M, Reeves RK, Kraft CS, Langevin S, Klatt NR. Effects of Fecal Microbial Transplantation on Microbiome and Immunity in Simian Immunodeficiency Virus-Infected Macaques. J Virol. 2016. https://doi.org/10.1128/jvi.00099-16.
Article
CAS
PubMed
PubMed Central
Google Scholar
Ekmekciu I, von Klitzing E, Neumann C, Bacher P, Scheffold A, Bereswill S, Heimesaat MM. Fecal microbiota transplantation, commensal Escherichia coli and Lactobacillus johnsonii strains differentially restore intestinal and systemic adaptive immune cell populations following broad-spectrum antibiotic treatment. Front Microbiol. 2017. https://doi.org/10.3389/fmicb.2017.02430.
Günaltay S, Rademacher L, Hörnquist EH, Bohr J. Clinical and immunologic effects of faecal microbiota transplantation in a patient with collagenous colitis. World J Gastroenterol. 2017. https://doi.org/10.3748/wjg.v23.i7.1319.
Article
PubMed
PubMed Central
Google Scholar
Markwart R, Condotta SA, Requardt RP, Borken F, Schubert K, Weigel C, Bauer M, Griffith TS, Förster M, Brunkhorst FM, Badovinac VP, Rubio I. Immunosuppression after sepsis: Systemic inflammation and sepsis induce a loss of naïve T-cells but no enduring cell-autonomous defects in T-cell function. PLoS ONE. 2014. https://doi.org/10.1371/journal.pone.0115094.
Article
PubMed
PubMed Central
CAS
Google Scholar
Microbiota Transfer Therapy alters gut ecosystem and improves gastrointestinal and autism symptoms: An open-label study. Microbiome. 2017. https://doi.org/10.1186/s40168-016-0225-7.