Speer B, Shoemaker N, Salyers A. Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clin Microbiol Rev. 1992;5(4):387–99.
Article
CAS
Google Scholar
Brodersen D, Clemons W, Carter A, Morgan-Warren R, Wimberly B, Ramakrishnan V. The structural basis for the action of the antibiotics tetracycline, pactamycin, and hygromycin B on the 30S ribosomal subunit. Cell. 2000;103(7):1143–54.
Article
CAS
Google Scholar
Lokeshwar B, Escatel E, Zhu B. Cytotoxic activity and inhibition of tumor cell invasion by derivatives of a chemically modified tetracycline CMT-3 (COL-3). Curr Med Chem. 2001;8(3):271–9.
Article
CAS
Google Scholar
Gu Y, Lee H, Roemer E, Musacchia L, Golub L, Simon S. Inhibition of tumor cell invasiveness by chemically modified tetracyclines. Curr Med Chem. 2001;8(3):261–70.
Article
CAS
Google Scholar
Duggar B. Aureomycin; a product of the continuing search for new antibiotics. Ann N Y Acad Sci. 1948;51(2):177–81.
Article
CAS
Google Scholar
Martin JF, Liras P. Engineering of regulatory cascades and networks controlling antibiotic biosynthesis in Streptomyces. Curr Opin Microbiol. 2010;13(3):263–73.
Article
CAS
Google Scholar
Engstrom MD, Pfleger BF. Transcription control engineering and applications in synthetic biology. Synth Syst Biotechnol. 2017;2(3):176–91.
Article
Google Scholar
Yuan P-H, Zhou R-C, Chen X, Luo S, Wang F, Mao X-M, Li Y-Q. DepR1, a TetR family transcriptional regulator, positively regulates daptomycin production in an industrial producer, Streptomyces roseosporus SW0702. Appl Environ Microbiol. 2016;82(6):1898–905.
Article
CAS
Google Scholar
Wu X, Jin L, Zhang H, Tong R, Ma M, Chen Y. Identification of truncated form of NosP as a transcription factor to regulate the biosynthesis of nosiheptide. FASEB J. 2018;32(1):453–65.
Article
CAS
Google Scholar
Li J, Li Y, Niu G, Guo H, Qiu Y, Lin Z, Liu W, Tan H. NosP-regulated nosiheptide production responds to both peptidyl and small-molecule ligands derived from the precursor peptide. Cell Chem Biol. 2018;25(2):143–53 e4.
Article
CAS
Google Scholar
Zhang Q, Chen Q, Zhuang S, Chen Z, Wen Y, Li J. A MarR family transcriptional regulator, DptR3, activates daptomycin biosynthesis and morphological differentiation in Streptomyces roseosporus. Appl Environ Microbiol. 2015;81(11):3753–65.
Article
CAS
Google Scholar
Yin S, Wang W, Wang X, Zhu Y, Jia X, Li S, Yuan F, Zhang Y, Yang K. Identification of a cluster-situated activator of oxytetracycline biosynthesis and manipulation of its expression for improved oxytetracycline production in Streptomyces rimosus. Microb Cell Factories. 2015;14:46–58.
Article
Google Scholar
Lešnik U, Gormand A, Magdevska V, Fujs Š, Raspor P, Hunter I, Petkovic´ H, Glavašobrovac L. Regulatory elements in tetracycline-encoding gene clusters: the otcG gene positively regulates the production of oxytetracycline in Streptomyces rimosus. Food Tech Biotech 2009;47(3):323–330.
Dairi T, Nakano T, Aisaka K, Katsumata R, Hasegawa M. Cloning and nucleotide sequence of the gene responsible for chlorination of tetracycline. Biosci Biotechnol Biochem. 1995;59(6):1099–106.
Article
CAS
Google Scholar
Nakano T, Miyake K, Endo H, Dairi T, Mizukami T, Katsumata R. Identification and cloning of the gene involved in the final step of chlortetracycline biosynthesis in Streptomyces aureofaciens. Biosci Biotechnol Biochem. 2004;68(6):1345–52.
Article
CAS
Google Scholar
Zhu T, Cheng X, Liu Y, Deng Z, You D. Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Metab Eng. 2013;19:69–78.
Article
CAS
Google Scholar
Alekshun MN, Levy SB, Mealy TR, Seaton BA, Head JF. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nature Struct Biol. 2001;8(8):710–4.
Article
CAS
Google Scholar
Wang W, Yang T, Li Y, Li S, Yin S, Styles K, Corre C, Yang K. Development of a synthetic oxytetracycline-inducible expression system for Streptomycetes using de novo characterized genetic parts. ACS Synth Biol. 2016;5(7):765–73.
Article
Google Scholar
Zhu D, Wang Y, Zhang M, Ikeda H, Deng Z, Cane D. Product-mediated regulation of pentalenolactone biosynthesis in Streptomyces species by the MarR/SlyA family activators PenR and PntR. J Bacter. 2013;195(6):1255–66.
Article
CAS
Google Scholar
Wilkinson SP, Grove A. Ligand-responsive transcriptional regulation by members of the MarR family of winged helix proteins. Cur Iss Mol Bio. 2006;8(1):51.
Google Scholar
Datsenko K, Wanner B. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A. 2000;97(12):6640–5.
Article
CAS
Google Scholar
Gust B, Challis G, Fowler K, Kieser T, Chater K. PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A. 2003;100(4):1541–6.
Article
CAS
Google Scholar
Zhang W, Wang L, Kong L, Wang T, Chu Y, Deng Z, You D. Unveiling the post-PKS redox tailoring steps in biosynthesis of the type II polyketide antitumor antibiotic xantholipin. Chem Biol. 2012;19(3):422–32.
Article
CAS
Google Scholar
Liu J, Zhu T, Wang P, Kong L, Wang S, Liu Y, et al. Function of Streptomyces antibiotic regulatory proteins family transcriptional regulator ctcB in the biosynthetic cluster of chlortetracycline. Acta Microbiol Sin. 2016;56(9):1486–95.
Google Scholar
Perera I, Grove A. Molecular mechanisms of ligand-mediated attenuation of DNA binding by MarR family transcriptional regulators. J Mol Cell Bio. 2010;2(5):243–54.
Article
CAS
Google Scholar
Wang Y, Xu F, Zhao G, Wang J. Characterization of a new GlnR binding box in the promoter of amtB in Streptomyces coelicolor inferred a PhoP/GlnR competitive binding mechanism for transcriptional regulation of amtB. J Bacter. 2012;194(19):5237–44.
Article
CAS
Google Scholar
Nagel G, Lahrz A, Dersch P. Environmental control of invasin expression in Yersinia pseudotuberculosis is mediated by regulation of RovA, a transcriptional activator of the SlyA/Hor family. Mol Microbio. 2001;41(6):1249–69.
Article
CAS
Google Scholar
Olano C, Méndez C, Salas JA. Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis. Nat Prod Rep. 2009;26(5):628–60.
Article
CAS
Google Scholar
van der Heul HU, Bilyk BL, McDowall KJ, Seipke RF, van Wezel GP. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Nat Prod Rep. 2018;35(6):575–604.
Article
Google Scholar
Chen J, Liu M, Liu X, Miao J, Fu C, Gao H, Muller R, Zhang Q, Zhang L. Interrogation of Streptomyces avermitilis for efficient production of avermectins. Synth Syst Biotechnol. 2016;1(1):7–16.
Article
Google Scholar
Liu W, Zhang Q, Guo J, Chen Z, Li J, Wen Y. Increasing avermectin production in Streptomyces avermitilis by manipulating the expression of a novel TetR-family regulator and its target gene product. Appl Environ Microbiol. 2015;81(15):5157–73.
Article
CAS
Google Scholar
Wu H, Wang Y, Yuan L, Mao Y, Wang W, Zhu L, et al. Inactivation of SACE_3446, a TetR family transcriptional regulator, stimulates erythromycin production in Saccharopolyspora erythraea. Synth Syst Biotechnol. 2016;1(1):39–46.
Article
Google Scholar
Wei J, He L, Niu G. Regulation of antibiotic biosynthesis in actinomycetes: perspectives and challenges. Synth Syst Biotechnol. 2018;3(4):229–35.
Article
Google Scholar
Wang P, Kim W, Pickens L, Gao X, Tang Y. Heterologous expression and manipulation of three tetracycline biosynthetic pathways. Angew Chem Int Edit. 2012;51(44):11136–40.
Article
CAS
Google Scholar
Roy A, Reddi R, Sawhney B, Ghosh DK, Addlagatta A, Ranjan A. Expression, functional characterization and X-ray analysis of HosA, a member of MarR family of transcription regulator from uropathogenic Escherichia coli. Protein J. 2016;35(4):269–82.
Article
CAS
Google Scholar
Wang P, Zhang W, Zhan J, Tang Y. Identification of OxyE as an ancillary oxygenase during tetracycline biosynthesis. Chembiochem. 2009;10(9):1544–50.
Article
CAS
Google Scholar
Russell S. Molecular cloning: a laboratory manual. NewYork: Cold Spring Harbor Laboratory Press; 2000.
Google Scholar